
CEAI, Vol.15, No.3 pp. 78-86, 2013 Printed in Romania

Customized Test Data Generator for HL7v3 based Healthcare Information
Systems

Alexandru Egner*, Florica Moldoveanu*, Nicolae Goga**, Alin Moldoveanu*, Victor Asavei*, Anca Morar*


*University Politehnica of Bucharest, Romania (e-mail: alexandru.egner@cs.pub.ro, florica.moldoveanu@cs.pub.ro,

victor.asavei@cs.pub.ro, anca.morar@cs.pub.ro),
**University of Groningen, Netherlands (e-mail: n.goga@rug.nl)

Abstract: Test effectiveness is a fundamental quality aspect of a test specification, which reflects its
ability to demonstrate system quality levels and discover system faults. The effectiveness is tightly linked
with the quality of the test data. The paper highlights specific challenges related to testing eHealth
applications and emphasizes the difficulties in testing HL7v3 based applications. This paper presents a
new approach on generating input test data sets: a highly customizable distance-based test data generator.
The paper highlights the importance of having organized structures of test data and shows how the
proposed test data generator uses adaptable distances to create clusters of test data. The generator is
designed to create test data in a testing language independent format and provide means of conversion to
the format used by the target testing language. A general architecture of this generator is presented, and
implementation guidelines are proposed. The paper also presents the conclusions drawn from validating
the generator in a real scenario.

Keywords: automatic testing, test data generation, HL7v3, TTCN-3, eHealth, clustering



1. INTRODUCTION

The interest in eHealth has increased greatly recently. The
domain is rapidly evolving because of the impact it has on
real life. Patient data is nowadays electronically stored and
the communication between eHealth systems is faster and
safer. Many protocols have been developed to expand the
eHealth boundaries. Such protocol is Health Level 7 version
3 (HL7v3) (HL7, 2011), a messaging protocol defined to
ensure interoperability between eHealth applications,
providing standardized structures for medical data
communication. In the context of a constantly growing
interest in eHealth domain, testing eHealth applications plays
an important role.

The quality of testing eHealth applications depends on the
quality of the input data set. Having a quality input data set is
an important challenge, especially when testing applications
compliant to HL7v3, a protocol that allows a high level of
flexibility in terms of the structure and content of the
message. HL7v3 was designed to provide the possibility of
defining custom message structures, which in time led to the
development of many applications that communicate medical
data in proprietary formatted messages. For this reason,
defining a suitable set of test data for each application can be
troublesome.

Having a quality input test data set is a prerequisite for testing
in general, not an eHealth specific one. When testing HL7v3
based applications, however, there are many factors that
make the defining of a quality input test data set a difficult
challenge. For example, according to the authors’ knowledge,
there exists no customizable HL7v3 message generator that

can be used by test designers to generate inputs for functional
testing.

This paper proposes a method of generating custom input test
data sets. The solution is generic, i.e. it may be used for
generating all types of input test data, not just for eHealth
applications. The method uses distances for generating
different test data values. The advantages of using different
distances in the generating process are discussed in this
paper.

The case study chosen to validate the solution was part of the
project Reliability Testing of Medical Systems (ReTeMeS)
(RTMS, 2012). A customizable test input data generator was
developed to address the need of a quality input test data set
that was required for testing an HL7v3 based system.

This paper presents the method used in the generating process
of the input test data set, the design and implementation of
the customizable generator used in the case study, which was
named Test Data Generator, and the conclusions drawn from
using this generator.

2. TESTING HL7V3 BASED APPLICATIONS USING
TTCN-3

HL7 is an ANSI accredited organization that operates in the
healthcare domain and is involved in the development of
international healthcare informatics interoperability
standards. HL7v3 is a messaging standard developed by the
HL7 organization, derived from the need for supporting
interoperability between healthcare systems.

HL7v3 was developed to correct much of the problems of

CONTROL ENGINEERING AND APPLIED INFORMATICS 79

HL7v2, however it is not yet used as a mainstream. One of
the causes is that, even though it was designed to be forward
compatible, full backward compatibility with the previous
versions cannot be achieved. This is one of the main reasons
why interoperability testing plays such an important role in
the development of the standard. Recent progress in the
direction of interoperability testing of HL7v3 (Namli et al.,
2009; Vega et al., 2010) based applications has been made,
one of the pioneers of this progress being the use of TTCN-3
and its correspondent test system.

Testing and Test Control Notation version 3 (TTCN-3)
standardized test scripting language (ETSI, 2007(a)) is a
textual language, which has the look and feel of a
programming language, but has been designed for testing
including artefacts required for testing.

A TTCN-3 based test specification is called Abstract Test
Specification (ATS). It usually consists out of various TTCN-
3 modules. A module is the top-level element of the TTCN-3
language, which is used to structure the test definitions of:

- Test data: the structure of test data is defined as types of
messages and the specific test data is represented by
instances of these types called templates;

- Test configurations: ports and test components are used
to define the active entities of the test system and the
interfaces to the System Under Test (SUT);

- Test behaviour: functions, altsteps, and testcases that
implement the interactions between the test components
and the SUT;

- Control: the global behaviour of the test system to
control the flow of a test case execution.

In order to get an executable test system based on TTCN-3,
an adaptation component (ETSI, 2007(b)) called Adapter and
an encoding/decoding component called CoDec have to be
provided, in addition to the Abstract Test Specification. The
execution environment uses these components to adapt data
and requests to the System Under Test (SUT) and its
interfaces.

TTCN-3 has gained much popularity for testing HL7-based
applications recently. This is the reason why TTCN-3 was
chosen as the target testing language for demonstrating the
capabilities of the Test Data Generator.

3. OVERVIEW OF THE INPUT DATA USED FOR
TESTING HL7V3 BASED APPLICATIONS

It is widely accepted in the literature that dividing the input
domain in equivalence classes reduces the cost of testing,
without affecting its quality. The problem of creating classes
of equivalence based on the input data domain of an SUT is
addressed in many testing environments. Clustering applied
to an input domain is a powerful method to considerably
reduce the quantity of relevant input data. The main
advantage of using clustering in testing is that it reduces the
number of test cases run on a SUT. Any representative of a
cluster triggers the same behaviour of the SUT as the rest of
the members of the same cluster would. This eliminates
redundant testing, significantly reducing the costs of testing.

While clustering has many advantages, there are still some
drawbacks that prevent test designers to adopt it. In some
cases the process of clustering is so expensive that is not
worthed. Clustering HL7v3 messages is especially
cumbersome, mostly due to the fact that there is no
customizable HL7v3 message generator available. Without a
message generator, clusters can be derived out of repositories
of existing messages.

The Reference Information Model (RIM) is a fundamental
model from which all HL7v3 messages are derived. To avoid
overloading the RIM with a huge number of classes, HL7
defines generic healthcare information classes at the RIM
level. RIM classes can be refined to more specific classes
needed for a particular domain. The process of refinement
leads to the development of huge number of classes for
different domains. For this reason, many HL7v3 profiles have
been developed from the need to formalize the messages, so
that applications from a specific domain can better
interoperate.

In this context, where applications usually communicate
through different types of HL7v3 messages, with different
structures, finding repositories of similar messages is
complicated.

Considering the difficulties of finding such repositories of
specific type of HL7v3 messages, the paper proposes a
different approach. Instead of collecting similar HL7v3
messages, that adhere to the same message structure, into a
test data repository, and then apply clustering algorithms to
group the messages, the tester can directly generate clusters
of equivalent messages. This way the tester can create
clusters of HL7v3 messages at virtually no cost. The Test
Data Generator is the proposed approach that addresses the
issue of creating such clusters. The following sections
describe the Test Data Generator and its immense potential.

The Test Data Generator can be used by test designers for
creating custom types of input data. It can be used to generate
messages that adhere to any type of HL7v3 compliant
structure. The generator enables the possibility of choosing
the target testing language and its correspondent test system,
adapting the format of the generated test data to the language
dependent format.

Due to the high level of customization it allows, specific
messages can be created as part of a certain cluster.
Generating clusters of HL7v3 messages is an important
realization that can be integrated in many testing
methodologies.

Clustering consists of classifying similar data into different
groups (clusters). Data clustering is commonly used when
data sampling and processing is needed (Jain et al., 1999). In
terms of software testing, a cluster should contain stimuli that
are considered similar in terms of the SUT behaviour, i.e.
produce equivalent results. There are many ways to generate
clusters of test data. One important challenge is to allow
testers a high level of flexibility for defining test inputs. The
process should provide means of customizing what the tester
defines as the most significant values of the generated HL7v3

80 CONTROL ENGINEERING AND APPLIED INFORMATICS

messages (i.e. boundaries for integer ranges, dictionaries for
charstring types, etc.). Another challenge is to enable test
designers to automatically generate specific HL7v3 message
clusters.

Data variance is investigated by inspecting the proximity of
objects. The survey of (Jain et al., 1999) presents how
clustering facilitates the grouping of a given collection into
meaningful similar data points. Measurement of the
proximity (similarity) between data points is accomplished
through well-defined partition clustering algorithms.
Example of direct utility of this result is in statistical theory
and machine learning, where the first step is pattern/data
representation.

Cluster analysis is a method for finding groups of clusters in
a population of objects. The goal of cluster analysis is to
divide a population in such way that objects with similar
attribute values are placed in the same cluster, the reunion of
all clusters form the entire domain, and clusters are
disjunctive. The similarity or dissimilarity is measured using
dissimilarity metrics such as the Euclidean Distance (Gower,
1985). Another example is the semantic distance function on
pairs of words or terms, entitled Google distance, which has
been suggested in (Cilibrasi and Vitanyi, 2007).

Independent of a test specification language, the test data
adequacy criterion remains among the most important factors
for the effectiveness of a test (Sneed, 2004). Approaches to
study the relevance of the selected test data include the notion
of distance between programs, where programs are the tested
systems. A test data set is considered to be adequate if it
distinguishes the tested program from other programs, which
are sufficiently far from it, i.e. produce different input-output
behaviour. Close programs producing same results are
considered the same (Davis and Weyuker, 1988). A similar
concept of Adaptive Random Testing is provided in (Ciupa et
al., 2006) where random test inputs rely on the notion of
distance between the test values.

All these approaches intend to study test data variance as a
measure of test data values spread over the input domain.
Given the very large number of possible inputs that could be
feed to a program that is tested, the goal is to minimize the
number of test cases in a test suite while maintaining test
effectiveness as high as possible.

4. DESIGN OF THE TEST DATA GENERATOR

The Test Data Generator uses as input an existing HL7v3
message (i.e. an instance of a HL7 type) and generates
messages that have a custom level of similarity with the
original one. The level of similarity between the generated
message and the original one is customizable. The input of
the Test Data Generator can be both a message that adheres
to a HL7v3 profile, or a message that has an user defined
structure based on custom RIM refined classes.

The Test Data Generator is intended to allow generation of
HL7v3 messages that can be used within different testing
languages. This means that the format of the generated
messages should match the testing language specific format.

In order to achieve this, a clear distinction should be made
between the process of generating HL7v3 messages, which is
language independent, and the adaptation of the generated
messages to a language specific format. This adaptation
consists of a conversion from the base structure of the
generated message to the specific testing language format.
This separation proves useful when there is a need for
changing the testing language that a particular test system
uses. In this case, the generated messages are still compatible
with the replacing testing language, provided that a suitable
format converter is implemented.

In order to allow the separation of the two functionalities of
the test data generating process, the HL7v3 messages should
be generated in a simple, generic format that can easily be
translated to other testing language dependent formats.
Extensible Markup Language (XML) has been chosen as the
base format for the messages. The generated HL7v3
messages that adhere to the XML format are grouped under
the name raw test data.

Fig. 1. Overview of the Test Data Generator architecture

The architecture of the Test Data Generator consists of two
levels: the level of generating the raw test data, namely the
Raw Test Data Generator (RTDG), and the level that
represents the conversion of raw test data to different
formats, namely the Test Data Converter (TDC).

CONTROL ENGINEERING AND APPLIED INFORMATICS 81

Fig. 1 depicts the overview of the architectural design. These
two levels are designed to allow test designers a great
flexibility when choosing the target testing language and its
correspondent test system.

The first level of the architecture is represented by the
RTDG. This is the main component of the Test Data
Generator and it is responsible for generating the raw test
data. It allows two levels of customization that enable the test
designer to build specific types of messages. RTDG can be
used to generate messages one by one, with the help of an
integrated Graphical User Interface (GUI), or as a batch
process, in case a large repository of test data is needed.

The second level of the architecture describes TDC. This
level consists of several independent modules whose
responsibility is to convert the raw test data from the XML
format to any test language specific format. This level
represents the key element that links the generated raw test
data with the test languages used by different test systems.

5. IMPLEMENTATION OF THE TEST DATA
GENERATOR

5.1 Generating raw test data

The Raw Test Data Generator (RTDG) is the first layer of the
Test Data Generator and is responsible for generating custom
Hl7v3 messages. Ensuring the independence of the generated
input data from the testing system provides the testing team a
great level of flexibility, but leads to the addition of an
intermediate layer between the input data and the test system.
However, as described in the Subsection 5.2, this translation
is not difficult to realize.

RTDG provides two ways to customize the generating
process of HL7v3 messages. First one applies to the
message’s field values. This type of customization is named
low-level customization, since it does not provide means to
customize the message as a whole. Instead, it affects only
small parts of it. As opposed, the other type of customization,
named high-level customization, enables the generation of
certain type of messages, by constraining them to match a
specific message template.

The low level customization of the test data generator

One of the fundamental concepts used in clustering theory is
the distance. Distances are metrics that are used to determine
the similarity of two values. In the clustering context, they
can be used to validate the membership of a value to a certain
cluster. The same concept is applied to the Test Data
Generator. There are several distances used by the Test Data
Generator for customizing the generating process. By
gradually changing the distances, messages with various
levels of similarity can be generated.

In order to generate messages in a specific cluster, the tester
should first establish the cluster boundaries. This is done by
determining the distance thresholds for which all the
messages generated using distances in that interval are part of
the same cluster. By changing the distance within the

thresholds boundaries, a large set of HL7v3 messages that are
members of the same cluster can be generated. Similarly,
other clusters can be generated by defining new distance
thresholds.

Before detailing how distances are used and how they affect
the generated messages, the basic modules that form RTDG
and their interactions are presented. RTDG uses three input
files:

- An XSD file, the XML Schema that defines the HL7v3
types;

- A valid XML file containing a compliant HL7v3
message;

- A configuration file that constrains the generator to take
into account different generating information, such as the
use of mandatory field values or semantic contexts.

The output of RTDG is another XML file, containing the new
HL7v3 message. RTDG is designed to provide a great level
of flexibility in terms of the intended output. To adhere to the
cluster generator’s requirements described in the previous
sections, it has to provide two functionalities. The first one is
to generate diversified output that can be grouped in several
different clusters. The second functionality is to generate
HL7v3 messages that have a high degree of similarity that are
part of the same cluster. Considering the two requirements, a
set of modules that allow customization of the level of
similarity between the input HL7v3 message and the
generated one were developed.

Before detailing the technical realization of these modules, a
brief description of the test data generation process is
provided. Firstly, the input XML file representing the base
HL7v3 message is parsed and converted to a Document
Object Model (DOM) document. The resulting tree is
traversed and for each leaf a list of ancestors is saved. This
list of ancestors is used when creating an XPath expression to
uniquely identify the node in the XML Schema that
corresponds to the leaf. The type of the value contained in
that leaf is then extracted from the identified node.
Depending on that type, certain decisions are made, and the
leaf is given a new value. In the last step, when all the leaves
have been assigned the generated values, the modified DOM
document is saved into an XML file, which represents the
newly generated HL7v3 message.

The modules responsible for generating new values for the
leaves form the core of RTDG. These modules are named
low-level generators. Some of the low level generators are
customizable, so that the generated test data matches the
need. There are two types of such generators.

The first type consists of generators that create new values,
independent of the original ones. This is the case of values
that are, for example, of type boolean, or enumerated. In
these cases, the new value is not generated considering the
old one. These generators only ensure that the new value is a
valid one. For example, in case of the enumerated type, a list
of possible values is created based on the constraints
specified in the XML Schema file. A value is then chosen
from that list without taking into account the original one.

82 CONTROL ENGINEERING AND APPLIED INFORMATICS

This way the generator ensures that all possible values are
given equal chances. Another example is the string type for
which constraints are defined in the XML Schema file, that
restrict it to match a certain regular expression. For this
particular case we use an external Java library, Xeger
(XEGER, 2009), which allows us to generate values that
match the specified regular expression. This type of
generators does not allow any customization, being used in
the creation of clearly defined or constrained values.

The second type consists of generators that apply a set of
transformations to the original value. These are called
distance-based generators. The distance is a metric for
measuring the level of distinction between two values. The
distance-based generators implement various types of
distances for different value types. All these distances are
customizable in order to allow for a specified level of
similarity between values. For example, a string with no
constraints defined in the input XML Schema file translates
into a string of customizable Levenshtein distance (Yujian
and Bo, 2007), while an integer translates into another integer
of customizable Euclidean distance. The distance-based
generators are the only low level generators that can be
customized.

Both types of mentioned generators create new values
according to a field type. Although they behave differently,
their main scope is to generate field values rather than whole
messages. This is the reason why the process they are
involved in is called a low level generation. The low level
customization refers to the ability to customize the distances
used by the distance based generators, in order to allow for a
more flexible output of the test data generating process.

Two of the distances that are used and can be adjusted by the
low level customization are the Levenshtein distance and the
Euclidean distance. They demonstrate that the test data
generating process can be customized using distances.

The Levenshtein distance is a metric for measuring the
amount of differences between two sequences. It is also
called the edit distance. In the strings context, the
Levenshtein distance is defined as the minimum number of
edits needed to transform a string into another one. As
opposed to the Hamming distance, the Levenshtein distance
can also be applied in the case of strings of different length.
The Levenshtein distance used by the distance-based
generator can be adjusted in the process of generating test
data through the means of the low level customization.

The Euclidean distance is a metric for measuring the distance
between two different points. In the case of integer values,
the Euclidean distance calculates as the absolute value of the
subtraction of the two numbers. The distance-based generator
that uses the Euclidean distance is responsible for generating
values that have a customizable distance from the original
one.

The customization consists of the possibility of adjusting the
distances prior to the start of the generation process. Each
distance can be independently adjusted. If the output is

intended to have minor differences from the original input
message, lower values should be assign to the distance based
generators. By setting low distances, the tester generates
messages that are part of the same cluster. Higher values
assigned to the distance based generators determine major
differences between the input and the output message. In this
case, the generated message and the original one are not part
of the same cluster.

The overview of the low-level generation process is depicted
in Fig. 2. This figure shows how the new message is
generated with the help of the low level generators. The three
examples chosen represent the three most used low-level
generators. The first two, which handle the generation of
strings without constraints and integers, are distance-based
generators. They can be customized to use different
distances, according to the intended output message. The
third one, which handles strings with constraints, is not
customizable and does not generate values considering the
original value. Fig. 2 shows how the generated message is
formed on the same structure as the original one, the only
difference being the values it contains.

Fig. 2. Low-level generators

A comparison between snippets from the original message
and the generated one is shown in

Fig. 3. This example illustrates how low level generators are
used to create new messages.

Fig. 3. Example of generated values

CONTROL ENGINEERING AND APPLIED INFORMATICS 83

Fig. 3 shows different types of situations encountered when
generating values:

- The field type is a string, and its value is constrained to
match a certain regular expression;

- The field value can be chosen from a list, no other value
besides the ones in the list can be assigned to that field;

- The field value is fixed, no other value can be assigned
to that field;

- The field type is a string and its value has no defined
constraints.

The example illustrates three cases that appear during the
generation process. The first case is represented by the fixed
values, exemplified by the value INSTANCE of the
determinerCode. The XML Schema defines several fixed
values that should not be affected by the generating process.
The second case is represented by values that have
constraints, but are not fixed. These values are handled by the
non-customizable low-level generators. The values are
generated considering the constraints. These are the cases of
the enumerated type and the string that is constrained to
match a regular expression. The final case is the one of
values that nave no defined constraints. These are handled by
the distance-based generators. These are the only cases in
which the new value is generated based on the original one.
The example shows how a distance-based generator for
strings, which uses the Levenshtein distance, generates new
values. With the Levenshtein distance set to 3, the value
QEDTest of the attribute extension becomes sg0QEDTest.

The high level customization of the test data generator

The fact that RTDG can be used to create test data
repositories for different applications, using different
message structures, is dependent on the level of
customization provided by the generating process. In the
previous section, only the low level customization, which is
ensured by the distance-based generators, has been
mentioned. This section reveals other components that enable
further customization of the generating process, which form
the high-level customization level.

As the paper presented the low level customization of the test
data generating process, the distance-based generators were
mentioned. Test designers should be offered a method to
customize test data as a whole, as well. This process is called
high-level customization. There are various ways in which
high level customization can be used. One useful feature is
the possibility of adding constraints to the existing ones
defined in the XML Schema file on certain fields. This is
useful when adjusting the normal behaviour of the low level
customizations to specific scenarios. An example is the
restriction of a plain string, with no constraints defined in the
XML Schema file, to match a certain regular expression, or
of an integer value to have specified boundaries. Another
feature is the possibility of obstructing low-level
customization on certain fields of the message. These
operations overrule the low level customizations that
normally apply to each value of the generated test data.

Fig. 4 presents the general architecture of RTDG,
highlighting the two types of customization and the way they
influence the test data generating process.

As presented in Fig. 2 and in Fig. 3, the generating process
consists of modifying the values of an existing message
according to certain rules. These rules are defined in two
different contexts.

The first context is represented by the low level generators.
At this level, two types of rules can be defined. The first type
of rules is defined in the XML Schema. An example of such
rule is that a field must have a fixed specific value. This type
of rule cannot be overruled by external mean. This is shown
as the lowest of the three lines, which represent the low level
generators. The other type of rule that can be defined is
represented by the ones used by the distance-based
generators. These rules may be overridden and are shown as
the upper two lines describing the low level generators.

The second context is the high level customization. At this
level, rules can be defined in the configuration file, or by
using the Graphical User Interface (GUI). There is no
difference in terms of the behaviour of the generating process
when defining rules in the configuration file or by using the
GUI. These rules override the ones governing the low level
customization.

Fig. 4. Architecture of the Raw Test Data Generator (RTDG)

As shown in

Fig. 4, there are two components that handle the high level
customization, which are tightly linked: the configuration file
and the Graphical User Interface (GUI).

The use of an additional configuration file enables a method
to further customize the test data generation process. The
configuration file should allow the test designers to define
specific message types and rules, suitable to a particular test
purpose or test objective. The configuration file should
consist of a set of constraints that apply to fields of the

84 CONTROL ENGINEERING AND APPLIED INFORMATICS

message in the course of the generating process. The authors
have identified several types of constraints that can be
defined in the configuration file, such as:

- Fixed values for particular fields within the message;
- Values that are chosen from a fixed set;
- Values that match a certain regular expression;
- Values that are system dependent.

The constraints defined in the configuration file override the
ones used in the low level customization. The values that
have no constraints defined in the configuration file should be
generated based on the low level customization. The high
level customization is useful when test designers want to
define clusters of messages. A snippet of how the
configuration file may look like is shown in

Fig. 5.

Fig. 5. Example of a string constraint defined in the
configuration file

Fig. 5 shows how a constraint can be defined for a string. In
this case, a value constraint is defined for node “id”. Since
there can be several nodes with the name id, a list of
ancestors for that node should be defined, in order to identify
the correct one. This list contains all the nodes in the tree
path, starting from the root node of the message. Next, the
constraint is defined. In this case it is a regular expression
that the new value of the id node should match. Finally, the
original value is defined. This original value is not the same
as the value of the field id within the HL7v3 message.
Instead, it is used to overlap to that value, so that it provides
another starting point to the distance based generators. In this
particular case, where constraint is defined as a regular
expression, there is no need for the original value, since the
value is not created with the help of a distance-based
generator. However, when defining other types of constraints,
having the possibility to define another starting point for the
generation process can be an useful asset.

The GUI component is the visual equivalent of the
configuration file. The GUI has two main characteristics. The
first one is to provide a mean for visualization of HL7v3
messages. This includes displaying information about the
constraints defined in the XML Schema file for each field
value of the message. The second one is to allow the
definition of high-level constraints, in the same way as with
the configuration file. An example of how a test designer
would use this GUI is to load the input XML file, select the
fields that he wants to customize and set new constraints,
overlapping the original ones, and finally, generate the new
message.

The configuration file has, as mentioned, a similar role to the
generation of test data as the GUI. Their objective is the
same, but they differ mainly in one important aspect. While

the GUI is useful for test designers who want to visualize the
input test data and define restrictions in an easier way based
on it, it has the drawback of not being an automated process.
As opposed, the use of a configuration file is better when
batch processing, allowing for a larger set of test data to be
defined. For those test designers who need both, the
implementation of other components, such as converters
between the two formats, or GUI generators based on the
configuration file, the XML and the XML Schema, may
prove useful.

5.2 Converting raw test data

The second level of the Test Data Generator is the Test Data
Converter (TDC), the logical level above RTDG, as shown in

Fig. 1. This level is responsible for linking the raw test data
with test systems. Many of these test systems handle data in a
proprietary format, in which case there should be a way to
transform the generated raw test data into that specific
format.

To validate this solution, Testing and Test Control Notation
version 3 (TTCN-3) was selected as the target testing
language. The paper illustrates two examples of TDCs. Both
of them are used to adjust the test data to the TTCN-3 format.
These examples should substantiate the use of the Test Data
Generator.

Test Data Converter for specific HL7v3 profiles

This TDC is a simple GUI interface that allows for a quick
transition between the XML format, in which HL7v3
messages are defined, and the TTCN-3 template format. Its
purpose is to provide a mean for the test data to be used when
defining test cases in the TTCN-3 environment. It is not
meant for complete TTCN-3 test system solutions. It is
helpful for the test designers who define the Abstract Test
Specification.

The conversion of the test data from XML to TTCN-3 is not
straightforward. Since TTCN-3 has no reflection mechanism,
there is no immediate way of assigning values to the
template’s fields at runtime. For this reason, an intermediate
layer was added: a set of Java classes defining HL7v3 types.
The process to convert test data between the two formats
follows the next steps. Firstly an XML file is loaded. The file
is checked if it contains a valid HL7v3 message. If it does, it
is parsed and converted into a DOM document. Each node is
later translated into a Java object, which is serialized in a
specific format. The output is a TTCN-3 file containing all
the information that was stored in the XML file.

Even though the test data is not directly converted to the
TTCN-3 format and the process needs an intermediate layer,
the concept is a valid one and can be implemented.
Moreover, TDCs for other scripting languages, such as
Python or Tcl, may prove easier to implement.

The drawback of using this type of TDC is that each change
of scenario, such as changing the HL7v3 profile, or the target
testing language, leads to developing a completely new

CONTROL ENGINEERING AND APPLIED INFORMATICS 85

converter. The set of Java classes that were use to
intermediate the conversion describe general HL7v3 types
and specific HL7v3 messages, as defined by the Query for
Existing Data (QED), which is a HL7v3 profile. The
conversion of other type of HL7v3 messages assumes the
existence of other Java classes that act as the intermediate
layer.

Test Data Converter that uses the TTCN-3 test system
components

This example shows another approach on the conversion of
the HL7v3 messages from one format to other. This approach
has the advantage of automating the conversion process, and
is adaptable to changes to other HL7v3 profiles. The
drawback is that it can only be used to convert test data to the
TTCN-3 template format, and that the test designer should be
familiar with the architecture of a TTCN-3 test system and its
components.

Fig. 6 shows the architecture of a TTCN-3 test system. The
Encoder/Decoder (CoDec) component, which is used in the
conversion process, is detailed. The CoDec is the TTCN-3
test system component used for encoding or decoding the
TTCN-3 templates into objects that are passed to the TTCN-3
Executable component. It assures the link between the
TTCN-3 templates and the TTCN-3 test system. In this
approach, the CoDec component is used to decode values
into TTCN-3 templates.

Fig. 6. TTCN-3 Template Generator

There are tools that automatically generate the CoDec
component based on XML Schemas, such as TTWorkbench
(TTE, 2009). The CoDec has two functionalities. The first
one is encoding data, i.e. converting data from TTCN-3
templates to different types of objects that can be used by the
TTCN-3 test system. The second one is decoding data, the
inverse operation. The objective is to obtain TTCN-3
templates in this approach and for this, only the second
functionality of the CoDec, the decoding of data, is
considered.

The process of converting the generated raw test data into
TTCN-3 templates follows the next steps. The raw test data,
which is contained in XML files, is parsed and passed as

input to the CoDec. The decode method of the CoDec is then
called. The output is a TTCN-3 template that is serialized in a
TTCN-3 file.

This approach is suited for test designers that choose TTCN-3
as the target testing language and are familiar to the TTCN-3
test system architecture.

With the two proof of concepts shown, the paper illustrated
that generated raw test data can be converted to different
types of formats, that correspond to different testing
languages, in several ways.

6. CONCLUSIONS AND FUTURE WORK

This paper presented a new approach to generating
repositories of test data for testing HL7v3 based applications.
The importance of customizing the generating process was
highlighted and a method to achieve the customization level
was presented. An architecture for the Test Data Generator,
consisting of two levels of customization that enable the test
developer with a great flexibility when designing test inputs
was proposed. The paper also illustrated how can the Test
Data Generator be adjusted and used for generating clusters
of test data. This paper discussed different ways in which the
Test Data Generator can be used in conjunction with different
testing language and their correspondent test systems. The
case study validated the concept of using the Test Data
Generator in the context of TTCN-3 test system.

Future research focuses on extending customization of the
process by adding new distance based generators and
defining metrics to measure distances between entire HL7v3
messages. Another research direction is to investigate the
possibility of constraining field values and messages using
the constraint programming paradigm.

REFERENCES

Cilibrasi, R.L. and Vitanyi, P.M.B. (2007). The Google
Similarity Distance. IEEE Transactions on Knowledge
and Data Engineering IEEE Educational Activities
Department, 19(3), 370–383. ISSN 1041-4347.

Ciupa, I., Leitner, A., Oriol, M., and Meyer, B. (2006).
Object distance and its application to adaptive random
testing of object-oriented programs. In RT ’06:
Proceedings of the 1st international workshop on
Randomtesting, 55–63. ACM Press, New York, NY,
USA.

Davis, M. and Weyuker, E. (1988). Metric space-based test-
base adequacy criteria. The Computer Journal, 31(1),
17–24.

ETSI (2007a). European Telecommunications Standards
Institute (ETSI). European Standard (ES) 201 873-1
V3.2.1 (2007-02): The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language.
Sophia-Antipolis, France.

ETSI (2007b). European Telecommunications Standards
Institute (ETSI). European Standard (ES) 201 873-5
V3.2.1 (2007-02): The Testing and Test Control

86 CONTROL ENGINEERING AND APPLIED INFORMATICS

Notation version 3; Part 5: TTCN-3 Runtime Interface
(TRI). Sophia-Antipolis, France.

Gower, J. (1985). Properties of Euclidean and non-Euclidean
distance matrices. Linear Algebra and its Applications,
67, 81–97.

HL7 - Health Level Seven Standards Developing
Organizations (HL7 SDOs). Health Level Seven (HL7)
Messaging Standards Standard, Version 3.
www.hl7.org/v3ballot/html/index.htm. Accessed 1 Feb.
2011.

Jain, A.K., Murty, M.N., and Flynn, P.J. (1999). Data
Clustering: A Review. ACM Computing Surveys, Vol.
31, No. 3, pp. 264–323.

Namli, T., Aluc, G., and Dogac, A. (2009). An
interoperability test framework for HL7-based systems.
IEEE Transactions on Information Technology in
Biomedicine, 13(3), 389–399.

RTMS (2007-2009). ReTeMes Project: Reliability Testing Of
Medical Systems, EUREKA European Project (E!4053
RETEMES). www.eurekanetwork.org/project/-/id/4053.
Accessed 20 Jun. 2012.

Sneed, H.M. (2004). Measuring the Effectiveness of Software
Testing. Proceedings of SOQUA 2004 and TECOS 2004,
volume 58 of Lecture Notes in Informatics (LNI).
Gesellschaft fur Informatik.

TTE (2009). Testing Technologies IST GmbH. TTworkbench
Professional, an Eclipse based TTCN-3 IDE.
www.testingtech.com/products/ttworkbench.php.
Accessed 20 Jun. 2012.

Vega, D., Schieferdecker, I., and Din, G. (2010). Design of a
Test Framework for Automated Interoperability Testing
of Healthcare Information Systems. In eTELEMED
2010: Proceedings of the Second International
Conference on eHealth, Telemedicine, and Social
Medicine, St. Maarten, Netherlands Antilles, 123–130.

XEGER (2009). Xeger java library for generating random
text from regular expressions.
http://code.google.com/p/xeger. Accessed 20 Jun. 2012.

Yujian, L. and Bo, L. (2007). A Normalized Levenshtein
Distance Metric. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(6), 1091–1095.

