
CEAI, Vol.14, No.1, pp. 74-82, 2012 Printed in Romania

Artificial Intelligence based Solutions for
Cooperative Mobile Robots

D. Panescu, M. Kloetzer, A. Burlacu, C. Pascal

Technical University of Iasi, Dept. of Automatic Control and Applied Informatics
(e-mails: {dorup, kmarius, aburlacu, cpascal}@ac.tuiasi.ro)

Abstract: This paper presents the way some Artificial Intelligence techniques can contribute to obtaining
an efficient solution for a cooperative robotic problem. Based on certain abstraction and sensing
procedures the problem specification, the robots’ environment and their motion capabilities can be
transposed to a finite state representation. The distributed nature of the considered application involving
two robots and the reduced computation resources of individual robots conducted us to attaching robot
deliberative components in an agent based implementation using a specialized software platform, namely
JACK. The obtained multiagent system creates a framework for an approach that allows the interleaving
of planning and execution. The agents apply an A* type bidirectional search to find the movement plan.
The developed coordination protocol permits correct path generation even when the environment is
changing while the robots are moving. The computational complexity of the proposed approach is low,
and the system operation is supported by simulation experiments.

Keywords: mobile robots, multiagent system, path planning, A* algorithm, JACK agents.



1. INTRODUCTION; TARGETED PROBLEM

Collaborative Robotics has become a growing
interdisciplinary research area addressing problems like: task
allocation, cooperative planning and execution, cooperative
perception, multi-robot mapping and localization, formal
models of multi-robot plans, multi-robot learning, self-
configuration, networked robotics (Singh and Thayer, 2001,
EURON SIG), some of them being tackled by the approach
proposed in this paper. The above issues can be linked with
the methods of Artificial Intelligence (AI), the most
frequently with the multiagent systems (MASs). The agents’
features – reactivity, autonomous and proactive operation –
are important for Robotics (Murphy, 2000). In the case of a
multi-robot system the need of coordination becomes obvious
and the connection with an MAS turns out to be the practical
solution (Liu and Wu, 2001, Hsu and Liu, 2005).

This paper takes into account the case of a system with two
mobile robots. The task to be solved regards the robots’
movement in a partially known environment so that they
should meet as soon as possible. Such a scenario may appear
both in an industrial environment (two mobile robots that
must transfer a part or a tool) and in other types of situations
(for example, in exploring or rescue robots’ activities) (Dias
et al., 2004, Fiero et al., 2002, Uny Cao et al., 1997). The
paper presents an approach that obtains an optimal solution to
the robots’ meeting problem even in dynamic environments.
Although the scalability of our solution to more than two
robots is a challenging matter, the proposed method has the
main scientific contribution of constructing a computationally
feasible solution that links a rendezvous robotic problem with
a bidirectional search algorithm. This is a significant
approach as the subject of more robots’ meeting is still

raising open issues on the time optimality and dependency on
communication protocols (Meghjani and Dudek, 2011). Our
solution considers the robots as components of an MAS and
provides specific coordination and planning algorithms that
should be run by each individual robot.

The problem specifications are as follows. The map of the
environment is known and the initial positions of the two
robots, too. The plane area where the robots can move is
abstracted to a set of locations interconnected by several
ways. The robots have to find the optimal route to traverse so
that they meet in the shortest time, which conducts to
determining the shortest path. The difficult aspect is that
though the map is known in advance, some changes can
appear, namely it may happen that some new obstacles are
added and block certain ways. Thus the robots start with a
planned path and then they have to adapt it when one or more
ways are obstructed by objects that were not considered in
the initial map. Our hypothesis is that such obstacles will be
detected by the robots’ sensorial systems (e.g., by using
ultrasonic sensors in an approach as the one explained in
(Nagy, 2009)) from the beginning of a way, namely from the
moment when a robot is in an intersection, so that it will be
able to find an alternative path.

As further presented in this paper, the above specified robotic
problem can benefit from a set of AI methods and techniques.
Besides the already mentioned agent based solution for the
needed deliberative components, methods and tools from AI
for environment detection and abstraction, robots’ control
and communication, as well as for an efficient
implementation of the robotic system architecture can be
involved, too. Thus, the paper is organized as follows. First,
we present abstraction techniques that can be used for
obtaining a finite-state representation of the problem; these

CONTROL ENGINEERING AND APPLIED INFORMATICS 75

can be coupled with artificial vision instruments for the
robotic environment detection. Then, the algorithmic steps of
the devised robots’ coordination protocol are explained.
Some details regarding the searching mechanism that we use
are provided, followed by a description on the agents’ design
and implementation in JACK programming environment.
Some comments on the performed simulation experiments
and few conclusions end this paper.

2. ROBOT ABSTRACTION

This section illustrates some approaches that can be
employed for abstracting the motion capabilities of a mobile
robot evolving in a continuous environment to a finite state
representation. We consider an environment where a set of
regions is predefined. These regions can be obstacles, or they
can be areas of interest, such as places where the robots must
meet, or locations of different parts that have to be picked by
the robots.

As a primary stage, an abstraction procedure is needed that
should allow both the robots’ environment modelling and the
obtaining of the necessary data for the planning and control
mechanisms. It will involve the partitioning of the
environment into a set of adjacent cells having the same
shape. Such partitions (also called cell decompositions) can
be created by using tools from computational geometry (Berg
et al., 2008), the name of the partition being given by the
shape of its cells (Choset et al., 2005, La Valle, 2006). Once
a partition is created, each cell corresponds to a node of a
graph in the abstract representation. The edges between nodes
correspond to adjacency relations between cells and to
control capabilities of robot for moving from one cell to an
adjacent one. Then, for designing these control laws, one can
use results from (Habets and van Schuppen, 2004), where
feedback control laws driving all trajectories of an affine
system from a polytopal or simpliceal region through a
desired facet were designed. Thus, the motion and control
capabilities of robots are abstracted into a finite graph, where
a node (place) corresponds to a region where the robot can be
located, and an edge (way) corresponds to a feedback control
law driving the robot from one place to another. For a better

Fig. 1. A triangular partition of a given environment. The
obtained abstraction has 19 nodes (labelled by p1,…,p19),
and the edges are represented by dotted lines

understanding, Fig. 1 presents a triangular partition and the
corresponding graph of an environment containing three
obstacles.

We mention that such abstraction techniques were
successfully used when motion specifications for robots are
given as linear temporal and logic (LTL) statements about
attainment or avoidance of some regions from the
environment (Kloetzer and Belta, 2010).

The abstraction procedure can be connected with an artificial
vision technique in order to obtain measurements from the
workspace. Artificial vision is the most powerful sensor of
robots regarding the quantity and quality of obtained
information, seeking to emulate the performance of the
human eye. For the proposed approach, environment analysis
will be conducted using images acquired with a fixed camera
(eye in the sky (Siegwart, 2008)). A visual feature detection
method is employed for object description and for
construction of the Voronoi diagrams (Berg et al., 2008).
These are adaptable geometric structures that have numerous
applications in physics, astronomy, robotics and social
geography (Berg et al., 2008). A Voronoi diagram is a
complete roadmap method that tends to maximize the
distance between robot and obstacles in the map. For each
point in the free space, the distance to the nearest obstacle is
computed. The Voronoi diagram is defined by the edges
formed by these sharp ridge points. When the configuration
space obstacles are polygons, the Voronoi diagram consists
of straight segments that define the Voronoi cells.

Image processing algorithms can generate different types of
visual features. For objects’ description, image moments,
contour or point features may be used. In visual analysis
applications point features are low level descriptors precisely
locatable and persistent. These basic properties define the
usefulness of point features for object description. In the
considered solution, the Harris corner detector is used, as an
algorithm based on an underlying assumption that the point
features are associated with the maximum of the local
autocorrelation function. The algorithm has proved popular
due to its high reliability in finding L junctions, and the good
temporal stability makes it an attractive corner detector for
tracking (Gonzales and Woods, 2008). Initially, for a more
effective detection of visual features it is necessary to
improve the image through a variety of pre-processing
mechanisms: contrast adjustment, conversion to grayscale,
filtering, conversion to binary images. The Harris operator is
used to detect the point features that can characterize the
objects within the working scene. Using point features
extracted via the Harris algorithm (red representation in Fig.
2), the Voronoi diagrams are constructed and overlaid onto
the image, as shown in Fig. 2.

A set of equidistant points are obtained (blue representation),
points that will represent the base information for the map
construction. The remaining vertices of the Voronoi cells
represent the nodes of a graph. Edges between two nodes in
the graph have the cost distance equal to the distance
(expressed in pixels) between the two considered vertices in
the image plane. A fundamental constraint is that an edge can
be added to the graph if it can be completed by the robot (the

76 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 2. Voronoi diagram resulted from visual point features

robot's diameter transformed into pixels doesn’t intersect any
object).

In Fig. 2 the edges are divided in categories: those that are
defined by two nodes (black representation) and those
corresponding to one node (green representation). More
details on artificial vision utilization for robots’ environment
detection and abstraction can be found in (Burlacu et al.,
2010).

The techniques presented in this section enable us to solve a
robotic problem on the finite representation where places are
connected by ways that can be followed by robots, similar to
the approach considered in (Panescu et al., 2010). The plans
obtained on such a representation correspond to a sequence of
feedback control strategies in the initial environment, and
thus the solution provided in the remainder of the paper can
be adapted to real robotic scenarios.

3. THE COORDINATION PROTOCOL

Because the on-board computing resources of a mobile robot
are often limited, the proposed solution is to have an external
computer to run the agents dedicated to the two robots. This
means each robot has as its high level decision system an
agent. The two agents can communicate one with the other
and with the robot under control. If the task to be solved
becomes more complicated and further reasoning abilities are
needed, then a scheme with the two agents running on two
interconnected computers may be also taken into account, as
shown in Fig. 3.

The robots’ operation comprises two main parts: planning
and execution. These must be interleaved in a specific
manner, so that the imposed performance is obtained. The
planning part is solved by the MAS, applying a distributed
search; then, each agent knows the solution and can send to
the corresponding mobile robot commands regarding the
execution of necessary movements; they come back to
planning when a change in their environment is detected. At a
first decomposition level the agents’ activity is conducted
according to the following scheme:

Fig. 3. A multi-agent architecture to solve the navigation for
two mobile robots

Phase 1. Receive the initial robots position.

Phase 2. Plan a whole path to obtain the robots’ meeting.

Phase 3. Launch the execution of the planned path and then
monitor the conducted robot movement.

Phase 4. Take a decision in accordance with the information
acquired from robots: if the goal position is to be reached in
the next step, an approaching command is sent to each robot,
then the mission is ended; if the sensorial information regards
a blocked way, then go to Phase 1.

The above cycle is explained as follows. Based on the initial
information on the robots’ positions and the environment
map an appropriate searching algorithm is carried out to find
the solution for the robots’ movement. The proposed
approach is for using the A* heuristic search in a distributed
manner, because it offers certain advantages. The method
provides both completeness and optimality (Robotin et al.,
2010, Russell and Norvig, 2003, Yokoo and Ishida, 2001).

After the Phase 2 the two agents will know the entire optimal
succession of ways connecting their initial positions (of
course, one may exclude the case when no solution is
possible). In the above description Phases 3 and 4 appear in
sequence, but in fact they will be interleaved. This means an
agent sends towards its robot a specific command depending
on the sensorial information acquired from robot. Namely,
when the planned way is obstructed the mobile robot
sensorial system sends this information to its agent and the
entire cycle is re-started through the agents’ coordination
mechanism. Meanwhile, the two agents can detect the
moment when the two robots are supposed to meet and thus
they will inform the robots to apply a specific approaching
procedure, so that they should come nearby without collision.
To better clarify how the Phases 3 and 4 operate, further
details are provided, explaining the agent coordination
protocol and the way the decision about the next action is
taken. Let us note Pi the current position of one robot and
respectively Pj the present position for the other robot, while
Pi+1 and Pj+1 are the next positions of the two robots. The
developed protocol contains the following steps:

CONTROL ENGINEERING AND APPLIED INFORMATICS 77

Step 1. If the agent received a message regarding a blocked
way then it updates the map of the environment.

Step 2. If the agent received a message regarding the next
position of the partner robot, then it updates Pj and Pj+1.

Step 3. If the agent received a message for re-planning then it
sends the command to stop the controlled robot at the end of
the current way; when this happens, Pi becomes Pi+1 and the
agent continues with the Step 5.

Step 4. If Pi = Pj then the agent sends to the robot the
command to apply the approaching procedure and the cycle is
ended.

Step 5. The agent sends a message to the robot to check the
way from Pi to Pi+1 together with the other ways connected to
Pi and waits for the robot’s answer. For every way connected
to Pi that was detected as blocked, the agent updates the
environment map and sends the respective information to the
partner agent.

Step 6. If the way Pi to Pi+1 is blocked, the agent sends to the
partner agent the message asking a re-planning phase and
then it goes to the Phase 1.

Step 7. If the agent received a message from the other agent
for re-planning then it goes to Phase 1.

Step 8. If the way from Pi to Pi+1 is not blocked then the agent
tests for Pi+1 = Pj+1. If this condition holds

 then:

- it sends to the robot the command to go to Pi+1, to
apply the approaching procedure and the cycle is ended;

- it sends Pi+1 to the partner agent, as the next
position.

 else:

- it sends to the robot the command to go to Pi+1;

- it sends Pi+1 to the partner agent, as the next
position.

Step 9. The agent waits for the information from its robot
regarding the reach of the commanded position. When this
happens, Pi becomes Pi+1 and it goes to the Step 1.

These steps regard the phases 3 and 4 in the above presented
scheme and the connection with the phases 1 and 2, when
needed. It is to remark that an agent based implementation
overcomes a purely sequential operation. Namely, it is
considered a BDI (Belief-Desire-Intention) agent
architecture, as it can be obtained by making use of the Jack
agent development environment (Wooldridge, 2001, Evertsz
et. al., 2004). In an agent based implementation the execution
is an event driven one (Padgham and Winikoff, 2004). This
means an agent is waiting for events, mainly these meaning
messages received from its environment. As already told, in
our case an agent can receive messages from the other agent
and from the controlled robot. These messages can
asynchronously arrive and they will be kept in a queue. So,

even if a message is not received during the waiting state
within the Step 9, it will be kept and accordingly used. In
fact, the Steps 1, 2 and 3 are carried out as soon as the
corresponding messages are received and the agent ends the
current operation. Thus, one can say that the agents can
decide in almost real-time on the necessity of a re-planning
stage, a present or next approaching procedure (the only
possible delay regards the time spent by the agent to finalize
the ongoing activity). Regarding the Steps 4 and 8, they are
devoted to allow a smooth robots’ meeting without the need
to a priori establish this moment. Thus, the robots can have
different speeds and the coordination procedure allows a
correct robots’ approaching.

It is important to understand how the re-planning phase is
launched and operates. It is started when a robot detects the
next way in its path as being obstructed. Until that moment
the corresponding agent had already sent to its partner both
the present robot location (Pi) and the way that is blocked (Pi
– Pi+1). According to the Step 2, the agent also received the
present position of the other robot (Pj). Thus all the
information for applying a new A* based search is available:
the initial positions of the two robots and the updated map of
the environment. As soon as a new entire path is found, this
is sent for execution to the two agents, and they come back to
the Phase 3. It is to remark that when the re-planning phase is
asked, the agents have already exchanged information on all
the environment changes produced since the last updating.

Even during an execution without any obstacle appearance
the agents send messages to each other, in order to be
informed about the next positions to be reached, according to
the Step 8. Thus, there is no need for other feedback so that
the robot should have a meeting without collision. One can
easily show that this holds in the proposed procedure for all
the paths containing at least three segments. The only
restricting supposition is that once a robot starts moving on a
path it arrives at its end, because the way was checked to be
free. The case of an obstacle being introduced on a way when
a robot is already moving on it is not treated, but a
corresponding feedback can be added to the developed
mechanism.

4. THE ALGORITHM TO FIND THE OPTIMAL PATH

As already mentioned, a heuristic search was used to get the
plan of the robots’ movement, namely the A* algorithm. As
the considered application contains two agents an obvious
construction would be to apply a distributed approach, like
the one offered by the bidirectional search (Russell and
Norvig, 2003, Yokoo and Ishida, 2001). The problem is that
when applying A* in a bidirectional search, the performance
of the method is highly dependent on the heuristic function
depression. Namely, for a path planning problem (a case for
which the difference between the values of the heuristic
function for the successors of a node can be high) when
trying to put into practice an efficient bidirectional search, the
performance in the combined problem space is worse than
when using the initial problem space (Yokoo and Ishida,
2001). That is why the proposed approach is to avoid the
drawbacks of making the search in the combined problem

78 CONTROL ENGINEERING AND APPLIED INFORMATICS

space (this has n2 states when the initial space has only n
states), but to further benefit by the use of a distributed
bidirectional algorithm. Thus, the two agents know the initial
and the goal states (according to the initial positions of the
two robots) and apply A* with the corresponding initial data:
the initial state for an agent is the goal state for the other one.
The goal in each of the two searches is fixed and thus the
initial problem space is kept, while the ending condition
regards the moment when one agent finds a position that is
already within the solution of the other agent. Some details of
the constructed search procedure are further presented.

The devised bidirectional A* search relies on the typical A*
routine for finding successor nodes and it is implemented by
each of the two agents according to the following protocol:

Agent 1:

(start node = initial position of Agent 1;

 goal node = initial position of Agent 2)

1. Use the typical A* strategy to choose a successor node
(denoted by P1)

2. Update the current path (best path to P1)

3. Receive from Agent 2 its current path (denoted by Path2)

4. IF P1 belongs to Path2

 - construct the whole path by combining the current
path to P1 with Path2

 - send the whole path to Agent 2

- exit the search algorithm and begin movement

 ELSE

 - go to 1

 END IF

Agent 2:

(start node = initial position of Agent 2;

 goal node = initial position of Agent 1)

1. Use the typical A* strategy to choose a successor node
(denoted by P2)

2. Update the current path (best path to P2) and send it to
Agent 1

3. IF Agent 1 sends the whole path

- exit the search algorithm and begin movement

 ELSE

 - go to 1

 END IF

Such a searching approach benefits from the complexity
reduction determined by the bidirectional search (Russell and

Norvig, 2003). In our case this is coupled with the fact that
the two agents can work simultaneously and exchange
messages to detect the moment when the solution was
reached, which additional reduces the period for the solution
reaching; of course in this case there is a time spent with the
communication phase.

5. ON THE AGENTS’ DESIGN AND IMPLEMENTATION

The two agents are carried out in the programming
environment named JACK and Fig. 4 represents their
planning and execution design diagram (Padgham and M.
Winikoff, 2004, JACK intelligent agents, 2005). The
common agent structure is represented with continuous lines,
while the entities specific for the Agent 1 are marked with
discontinuous line, and the elements that appear only in the
case of Agent 2 are represented with dotted line. As already
mentioned, an agent has an event driven operation. The
reception of a message represents an external event
(ExternalMsg) that is treated by a corresponding plan, found
in accordance with the message contents and the BDI
mechanism. There will be internal events too, the ones that an
agent is using to drive its activities, like the Planning and
Execution BDI Events in Fig. 4.

Three types of messages are used by agents and these
determine the launching of corresponding plans:

- messages regarding the need of a re-planning phase,
containing as parameters the present robot position and the
blocked way (the corresponding plan is labelled
Re_PlanningMsg in Fig. 4).

- messages concerning the present robot position,
which are used when the partner agent has asked re-planning
(these activate the plan called PresentPositionMsg in Fig. 4).

- the third type of messages regards the path planning
phase and this is different for the agent that is supposed to
assemble the plan of the path – Agent 1, and respectively the
other agent, called Agent 2. The Agent 1 sends a message
after a plan was found for the entire path and the message
contains this path (the plan PathMsg handles the message);
Agent 2 sends messages containing the positions that it has
already planned; such messages are handled by the plan
NextPositionMsg.

At the initial time, the planning process is started after each
agent has received the other agent’s robot position. Through
the PresentPositionMsg plan the Planning BDI Event is
posted as an internal message. This activates the
FindNextPosition Plan that materializes the corresponding
searching algorithm, as described in the previous section.

The agent’s knowledge is kept in three entities, named
BeliefSets for JACK agents. Thus, the AgentPath beliefset
stores the information on the path for the commanded robot.
In the planning phase this knowledge base is filled in with the
positions found through the A* algorithm, while during the
execution it keeps the track of the robot’s movements. The
OtherAgentPath beliefset contains the current position and
the path planned by the other agent for its robot. The third

CONTROL ENGINEERING AND APPLIED INFORMATICS 79

Fig. 4. The agents’ planning and execution diagram

knowledge base, the Environment belief set holds the
information about the map of the robots’ environment. All
these belief sets are used by the FindNextPosition plan to
determine the next robot planned position. This plan contains
an additional action for the Agent 2, namely the one for
sending a message regarding the next planned position
towards the Agent 1 (this appears with dotted line in Fig. 4).
The last action of the FindNextPosition plan posts a new
PlanningBDIEvent message, thus resulting a loop (each
iteration corresponds with an application of the algorithm
presented in the previous section). This loop is ended when
Agent 1 determines a coincidence between two positions
within the belief sets AgentPath and OtherAgentPath. At that
moment the EqualPositions plan is activated; this can
compose the whole path to be traversed by the two robots.
After that, the Agent 1 up-dates its belief sets and sends the
entire path to the Agent 2 (as an external message). The
Re_Planning plan is used after an external message regarding
the need of a re-planning phase is received and it has as
consequence the ceasing of the execution phase when the
corresponding robot reaches the next position. After that both
agents enter the planning cycle.

The execution phase is started by different events for the two
agents. Agent 1 starts its execution phase by launching the
ExecutionBDIEvent from the EqualPositions plan. This event
is handled by the NextPosition plan, which uses the agent’s
belief sets to determine each movement This plan includes
the tests within the Steps 2 and 5 of the algorithm presented
in Section 3. The agent’s plan supposes a link with the
physical robot by the means of a JACK view entity, which
materializes the communication with the robot controller. As
with the FindNextPosition plan, the NextPosition plan, which
controls the execution phase, establishes a loop (see the
algorithm in Section 3). This is ended by one of the following

three situations. One case regards the moment when the test
for the two robots’ positions shows they are supposed to
meet. The second ending condition appears when the test
regarding an obstructed way has a positive result; in this case
the agent sends an external message to inform the partner
agent and to restart its planning phase. The third situation is
when according to the agent’s AgentPath beliefset its next
robot position is not available, as a consequence of receiving
an external re-planning message from the other agent. The
execution phase is similar for the Agent 2, except for its
starting condition that is determined by the PathMsg plan.

The structure of Fig. 4 conducted the development of JACK
agents and these can run on the same computer, or they can
be deployed on distinct networked computers.

6. EXPERIMENTAL RESULTS

This paper regards an on-going research. The plan is to
couple the two agents with two Khepera type mobile robots.
Until now only some simulation experiments have been
conducted to prove the efficiency and adequacy of the
proposed scheme, the performance of the agent based path
searching mechanism and of the agents’ coordination
protocol.

A sequence of situations obtained within an illustrative
scenario is presented in Figs. 5, 6 and 7.

One can see in Fig. 5 the initial robots’ positions (marked
with red and blue colours) and the map of their environment.
The experiment considers the case when the nodes in the
searching graph will have one or two successors. The weight
of edges is proportional with the length of ways. Thus, in our
case the weight of horizontal edges is 1, while the oblique

edges have the cost of 2 , except for the edges that

80 CONTROL ENGINEERING AND APPLIED INFORMATICS

correspond to the ways between positions 5 and 8, 24 and 32

which have the weight of 5 . The optimal path for this map
consists in the following succession of positions: 1 – 2 – 4 –
11 – 17 – 21 – 27 – 33 – 36 – 38. In fact, the Agent 1 (the one
for the red robot) detected the path from position 1 to 21, and
the Agent 2 the path from 38 to 11, and then the node
corresponding to the position labelled 21 is detected by the
Agent 1 in both agents’ paths and the searching processes
were ended, the result being the optimal solution. The image
in Fig. 6 shows that in our experiment five ways were
successively detected as being obstructed.

Fig. 5. The environment map and initial positions of robots

Fig. 6. The environment with several obstructed ways

This is a difficult case, as the two agents have had to re-plan
their path three times. Thus, first the robots begin with the
path having the minimal cost and when the red robot is in the
position 4, both possibilities to continue are being obstructed
(see Fig. 6). The optimal path in these new conditions is the
one through the positions: 2 – 5 – 9 – 16 – 20 for the first
robot (as discovered by the Agent 1), and 36 – 32 – 25 – 20
for the second one. A further blocked way appears (16 – 20)
and the agents carry out another planning phase. The
reconfigured path is: 9 – 5 – 2 – 1 – 3 – 7 – 13 – 18 – 22 for
the red robot, and 25 – 32 – 36 – 38 – 37 – 34 – 28 – 22 for

Fig. 7. The robots in the meeting position

Fig. 8. A case with a large number of blocked ways

CONTROL ENGINEERING AND APPLIED INFORMATICS 81

the blue one. The two paths are traversed until the first robot
is in the position 7 and the second robot is in the position 34.
By that time, the blue robot detects the two blocked ways and
asks for the re-planning phase. The agents are able to find a
new solution, this being: 7 – 3 – 6 – 14 – 19 – 23 for the first
robot, and 34 – 37 – 35 – 30 – 23 for the second one, which is
again the optimal one for the current environment. By
making use of this plan the robots successfully meet in
position 23, as shown in Fig. 7 obtained in our simulation.

Even the distributed solution has visible advantages in the
common cases, it may appear that when a large number of
blocked ways occurs the multi-robot solution is not better
than a single robot one. Such a case is presented in Fig. 8.
The positions 1 and 5 are the robots’ initial places. The
scenario involves several movement attempts. First, the
optimal routes are 1 – 3 – 4 for the red robot and 5 – 4 for the
blue one. The robots start the movement on these paths and
when reaching the positions 3 and respectively 4, the ways 3
– 4, 3 – 6 and 4 – 6 become obstructed. The new re-planned
path is 3 – 2 – 8 – 6 for the first robot, and 4 – 5 – 6 for the
second robot. After carrying out a single movement, when the
robots are in the positions 2 and 5, the way between 2 and 8
becomes obstructed. A new reconfigured path is 2 – 3 – 1 – 8,
coupled with 5 – 6 – 8.

After two movement steps of the two robots, the first of them
detects the blocked way between the positions 1 and 8, while
the second one observes the obstructed way between the
positions 8 and 9. After a further re-planning, the path 1 – 9
– 7 – 5 is used by the first robot, while the second robot
traverses the route 8 – 6 – 5. Thus, the meeting position is the
initial place of the blue robot. Though in this scenario the
distributed solution seems to provide no advantage (it appears
that the first robot had to traverse the whole path), it is to
remark that the second robot influences a faster reaching of
the solution through its sensorial acquisition. So, this robot is
the one that detects the obstructed way between the positions
8 and 9, and this information being provided to the agent of
the red robot allows it to reduce the number of re-planning
phases.

7. CONCLUSIONS

The proposed architecture is an additional example on how
the AI techniques can determine an improved solution for
Robotics. The way planning and execution are interleaved
and the robots are coordinated by the means of an MAS allow
the system to face a dynamic environment. Even when
several changes appear during the robots’ movement, their
decisional system is able to reconfigure the path in an optimal
way. It is to mention that the sensorial system considered for
the mobile robots can be a simple one, as only the presence of
the obstacles has to be detected.

The agent based solution has distinct advantages regarding
the way a dynamic environment can be handled. An
environment modification is producing an event that can be
appropriately treated by the provided plans. The BDI agents’
reasoning mechanism determines a robust planning scheme
because more plans can be devised for the same event; these
will be chosen by a suitable filtering scheme, and used one

after the other when failures appear. Thus the proposed
application can be enhanced, so that the planning phase
should be conducted by more decision criteria: if there is no
dangerous area find the shortest path, when such an area
exists find a path that avoids the robots’ approaching the
prohibited places.

This paper focused on developing an efficient planning and
coordination protocol on a finite-state representation of the
problem. The connection between this solution and a real
robotic scenario was maintained by various AI tools for
environment detection and abstraction and for robot control.
Although the involved bidirectional search algorithm implies
a computationally feasible method, it prevents the direct
scaling of the current scenario to more than two robots.

As future work, we plan to extend the approach to more
robots and to use Khepera type robots for carrying out real
experiments of the proposed techniques. It is to further study
if the bidirectional search can be extended for the case of
three robots that are supposed to meet by repeating the
procedure for pairs of robots, or the whole algorithm has to
be redesigned.

ACKNOWLEDGEMENTS

The second author acknowledges the support of the CNCS-
UEFISCDI grant PN-II-RU PD code 333/2010. The third
author acknowledges the support of the project PERFORM-
ERA "Postdoctoral Performance for Integration in the
European Research Area" (ID-57649), financed by the
European Social Fund and the Romanian Government. The
forth author acknowledges the support of BRAIN “Doctoral
scholarships as an investment in intelligence” project,
financed by the European Social Found and Romanian
Government.

REFERENCES

de Berg, M., Cheong O., van Kreveld, M., and Overmars M.
(2008). Computational Geometry: Algorithms and
Applications, Springer-Verlag.

Burlacu A., Kloetzer M. and Panescu D. (2010). Some AI
Based Approaches on Mobile Robots Motion Planning,
Solid State Phenomena, vols. 166-167, pp. 101 - 108.

Choset H., Lynch K.M., Hutchinson S., Kantor G., Burgard
W., Kavraki L.E. and Thrun S. (2005). Principles of
Robot Motion: Theory, Algorithms, and
Implementations, MIT Press, Boston, USA.

Dias, M.B., Zinck, M., Zlot, R.M. and Stentz, A. (2004).
Robust Multirobot Coordination in Dynamic
Environments, IEEE International Conference on
Robotics and Automation, April, pp. 3435 - 3442.

EURON SIG (Special Interest Group on Cooperative
Robotics of European Robotics Research Network),
http://www.aass.oru.se/Agora/EuronCoop/.

Evertsz R. et. al. (2004). Implementing Industrial Multiagent
Systems using JackTM, PROMAS 2003, Australia,
Springer, pp.18-48.

Fiero R. et al. (2002). A Framework and Architecture for
Multi-Robot Coordination, International Journal of
Robotics Research, Oct.-Nov., pp. 977 – 995.

82 CONTROL ENGINEERING AND APPLIED INFORMATICS

Gonzalez R. and Woods R. (2008). Digital Image Processing
Third Edition, Pearson Pretince Hall.

Habets L., and van Schuppen J. (2004). A Control Problem
for Affine Dynamical Systems on a Full-dimensional
Polytope, Automatica, 40: 21–35.

Hsu H.C.-H. and Liu A. (2005). Multiagent-Based Multi-
team Formation Control for Mobile Robots, Journal of
Intelligent and Robotic Systems, 42, pp. 337–360.

JACK™ Intelligent Agents, Agent Manual, Agent Oriented
Software, Carlton South, Victoria, Australia, 2005

Kloetzer M. and Belta C. (2010). Automatic Deployment of
Distributed Teams of Robots from Temporal Logic
Motion Specifications, IEEE Transactions on Robotics,
26(1): 48–61.

La Valle S.M. (2006). Planning algorithms, Cambridge
University Press, Cambridge, UK.

Liu J. and Wu J. (2001). Multi-Agent Robotic Systems, CRC
Press, Boca Raton, pp. 4 – 17.

Meghjani M. and Dudek G. (2011). Combining Multi-Robot
Exploration and Rendezvous, 2011 Canadian Conference
on Computer and Robot Vision, IEEE Computer Society,
pp. 80 – 85.

Murphy R. (2000). Introduction to AI Robotics, The MIT
Press, pp. 257 – 305.

Nagy I. (2009). Behaviour Study of a Multi-Agent Mobile
Robot System during Potential Field Building, Acta
Polytechnica Hungarica, Vol. 6, No. 4, pp. 111 – 136.

Padgham L. and Winikoff M. (2004). Developing Intelligent
Agent Systems. A Practical Guide, John Wiley & Sons,
Chichester, pp. 8-31.

Panescu D., Kloetzer M., Burlacu A., Pascal C. (2010). A
multiagent based solution for mobile robots path
planning, The 14th International Conference on System
Theory and Control, Sinaia, pp. 225 - 230.

Robotin R., Lazea Gh., Dobra P. (2010). Mobile Robots Path
Planning With Heuristic Search, Journal of Control
Engineering and Applied Informatics (CEAI), Vol.12,
No .4, pp. 18-23.

Russell S. and Norvig P. (2003). Artificial Intelligence. A
Modern Approach, Prentice Hall, Upper Saddle, pp. 96–
106.

Siegwart R. and Nourbakhsh I. (2008). Introduction to
Autonomous Mobile Robots, The MIT Press, Cambridge,
USA.

Singh S. and Thayer S. (2001). ARMS: Autonomous Robots
for Military Systems. A Survey of Collaborative Robotics
Core Technologies and Their Military Applications,
Technical Report, The Robotics Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA.

Uny Cao Y., Fukunaga A., Kahng A. (1997) Cooperative
Mobile Robotics: Antecedents and Directions,
Autonomous Robots, 4, pp. 1–23.

Wooldridge M. (2001). Intelligent agents. In: Multiagent
Systems. A Modern Approach to Distributed Artificial
Intelligence, G. Weiss, Edit., The MIT Press, Cambridge,
pp. 54-61.

Yokoo M. and Ishida T. (2001). Search Algorithms for
Agents. In: Multiagent Systems. A Modern Approach to
Distributed Artificial Intelligence, G. Weiss, Edit., The
MIT Press, Cambridge, pp. 179-191.

