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Abstract: This paper presents the way some Artificial Intelligence techniques can contribute to obtaining 
an efficient solution for a cooperative robotic problem. Based on certain abstraction and sensing 
procedures the problem specification, the robots’ environment and their motion capabilities can be 
transposed to a finite state representation. The distributed nature of the considered application involving 
two robots and the reduced computation resources of individual robots conducted us to attaching robot 
deliberative components in an agent based implementation using a specialized software platform, namely 
JACK. The obtained multiagent system creates a framework for an approach that allows the interleaving 
of planning and execution. The agents apply an A* type bidirectional search to find the movement plan. 
The developed coordination protocol permits correct path generation even when the environment is 
changing while the robots are moving. The computational complexity of the proposed approach is low, 
and the system operation is supported by simulation experiments.  
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

1. INTRODUCTION; TARGETED PROBLEM 

Collaborative Robotics has become a growing 
interdisciplinary research area addressing problems like: task 
allocation, cooperative planning and execution, cooperative 
perception, multi-robot mapping and localization, formal 
models of multi-robot plans, multi-robot learning, self-
configuration, networked robotics (Singh and Thayer, 2001, 
EURON SIG), some of them being tackled by the approach 
proposed in this paper. The above issues can be linked with 
the methods of Artificial Intelligence (AI), the most 
frequently with the multiagent systems (MASs). The agents’ 
features – reactivity, autonomous and proactive operation – 
are important for Robotics (Murphy, 2000). In the case of a 
multi-robot system the need of coordination becomes obvious 
and the connection with an MAS turns out to be the practical 
solution (Liu and Wu, 2001, Hsu and Liu, 2005). 

This paper takes into account the case of a system with two 
mobile robots. The task to be solved regards the robots’ 
movement in a partially known environment so that they 
should meet as soon as possible. Such a scenario may appear 
both in an industrial environment (two mobile robots that 
must transfer a part or a tool) and in other types of situations 
(for example, in exploring or rescue robots’ activities) (Dias 
et al., 2004, Fiero et al., 2002, Uny Cao et al., 1997). The 
paper presents an approach that obtains an optimal solution to 
the robots’ meeting problem even in dynamic environments. 
Although the scalability of our solution to more than two 
robots is a challenging matter, the proposed method has the 
main scientific contribution of constructing a computationally 
feasible solution that links a rendezvous robotic problem with 
a bidirectional search algorithm. This is a significant 
approach as the subject of more robots’ meeting is still 

raising open issues on the time optimality and dependency on 
communication protocols (Meghjani and Dudek, 2011). Our 
solution considers the robots as components of an MAS and 
provides specific coordination and planning algorithms that 
should be run by each individual robot. 

The problem specifications are as follows. The map of the 
environment is known and the initial positions of the two 
robots, too. The plane area where the robots can move is 
abstracted to a set of locations interconnected by several 
ways. The robots have to find the optimal route to traverse so 
that they meet in the shortest time, which conducts to 
determining the shortest path. The difficult aspect is that 
though the map is known in advance, some changes can 
appear, namely it may happen that some new obstacles are 
added and block certain ways. Thus the robots start with a 
planned path and then they have to adapt it when one or more 
ways are obstructed by objects that were not considered in 
the initial map. Our hypothesis is that such obstacles will be 
detected by the robots’ sensorial systems (e.g., by using 
ultrasonic sensors in an approach as the one explained in 
(Nagy, 2009)) from the beginning of a way, namely from the 
moment when a robot is in an intersection, so that it will be 
able to find an alternative path. 

As further presented in this paper, the above specified robotic 
problem can benefit from a set of AI methods and techniques. 
Besides the already mentioned agent based solution for the 
needed deliberative components, methods and tools from AI 
for environment detection and abstraction, robots’ control 
and communication, as well as for an efficient 
implementation of the robotic system architecture can be 
involved, too. Thus, the paper is organized as follows. First, 
we present abstraction techniques that can be used for 
obtaining a finite-state representation of the problem; these 
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can be coupled with artificial vision instruments for the 
robotic environment detection. Then, the algorithmic steps of 
the devised robots’ coordination protocol are explained. 
Some details regarding the searching mechanism that we use 
are provided, followed by a description on the agents’ design 
and implementation in JACK programming environment. 
Some comments on the performed simulation experiments 
and few conclusions end this paper. 

2. ROBOT ABSTRACTION 

This section illustrates some approaches that can be 
employed for abstracting the motion capabilities of a mobile 
robot evolving in a continuous environment to a finite state 
representation. We consider an environment where a set of 
regions is predefined. These regions can be obstacles, or they 
can be areas of interest, such as places where the robots must 
meet, or locations of different parts that have to be picked by 
the robots. 

As a primary stage, an abstraction procedure is needed that 
should allow both the robots’ environment modelling and the 
obtaining of the necessary data for the planning and control 
mechanisms. It will involve the partitioning of the 
environment into a set of adjacent cells having the same 
shape. Such partitions (also called cell decompositions) can 
be created by using tools from computational geometry (Berg 
et al., 2008), the name of the partition being given by the 
shape of its cells (Choset et al., 2005, La Valle, 2006). Once 
a partition is created, each cell corresponds to a node of a 
graph in the abstract representation. The edges between nodes 
correspond to adjacency relations between cells and to 
control capabilities of robot for moving from one cell to an 
adjacent one. Then, for designing these control laws, one can 
use results from (Habets and van Schuppen, 2004), where 
feedback control laws driving all trajectories of an affine 
system from a polytopal or simpliceal region through a 
desired facet were designed. Thus, the motion and control 
capabilities of robots are abstracted into a finite graph, where 
a node (place) corresponds to a region where the robot can be 
located, and an edge (way) corresponds to a feedback control 
law driving the robot from one place to another. For a better  

 

Fig. 1. A triangular partition of a given environment. The 
obtained abstraction has 19 nodes (labelled by p1,…,p19), 
and the edges are represented by dotted lines 

understanding, Fig. 1 presents a triangular partition and the 
corresponding graph of an environment containing three 
obstacles. 

We mention that such abstraction techniques were 
successfully used when motion specifications for robots are 
given as linear temporal and logic (LTL) statements about 
attainment or avoidance of some regions from the 
environment (Kloetzer and Belta, 2010). 

The abstraction procedure can be connected with an artificial 
vision technique in order to obtain measurements from the 
workspace. Artificial vision is the most powerful sensor of 
robots regarding the quantity and quality of obtained 
information, seeking to emulate the performance of the 
human eye. For the proposed approach, environment analysis 
will be conducted using images acquired with a fixed camera 
(eye in the sky (Siegwart, 2008)). A visual feature detection 
method is employed for object description and for 
construction of the Voronoi diagrams (Berg et al., 2008). 
These are adaptable geometric structures that have numerous 
applications in physics, astronomy, robotics and social 
geography (Berg et al., 2008). A Voronoi diagram is a 
complete roadmap method that tends to maximize the 
distance between robot and obstacles in the map. For each 
point in the free space, the distance to the nearest obstacle is 
computed. The Voronoi diagram is defined by the edges 
formed by these sharp ridge points. When the configuration 
space obstacles are polygons, the Voronoi diagram consists 
of straight segments that define the Voronoi cells. 

Image processing algorithms can generate different types of 
visual features. For objects’ description, image moments, 
contour or point features may be used. In visual analysis 
applications point features are low level descriptors precisely 
locatable and persistent. These basic properties define the 
usefulness of point features for object description. In the 
considered solution, the Harris corner detector is used, as an 
algorithm based on an underlying assumption that the point 
features are associated with the maximum of the local 
autocorrelation function. The algorithm has proved popular 
due to its high reliability in finding L junctions, and the good 
temporal stability makes it an attractive corner detector for 
tracking (Gonzales and Woods, 2008). Initially, for a more 
effective detection of visual features it is necessary to 
improve the image through a variety of pre-processing 
mechanisms: contrast adjustment, conversion to grayscale, 
filtering, conversion to binary images. The Harris operator is 
used to detect the point features that can characterize the 
objects within the working scene. Using point features 
extracted via the Harris algorithm (red representation in Fig. 
2), the Voronoi diagrams are constructed and overlaid onto 
the image, as shown in Fig. 2.  

A set of equidistant points are obtained (blue representation), 
points that will represent the base information for the map 
construction. The remaining vertices of the Voronoi cells 
represent the nodes of a graph. Edges between two nodes in 
the graph have the cost distance equal to the distance 
(expressed in pixels) between the two considered vertices in 
the image plane. A fundamental constraint is that an edge can 
be added to the graph if it can be completed by the robot (the  
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Fig. 2. Voronoi diagram resulted from visual point features 

robot's diameter transformed into pixels doesn’t intersect any 
object). 

In Fig. 2 the edges are divided in categories: those that are 
defined by two nodes (black representation) and those 
corresponding to one node (green representation). More 
details on artificial vision utilization for robots’ environment 
detection and abstraction can be found in (Burlacu et al., 
2010).  

The techniques presented in this section enable us to solve a 
robotic problem on the finite representation where places are 
connected by ways that can be followed by robots, similar to 
the approach considered in (Panescu et al., 2010). The plans 
obtained on such a representation correspond to a sequence of 
feedback control strategies in the initial environment, and 
thus the solution provided in the remainder of the paper can 
be adapted to real robotic scenarios. 

3. THE COORDINATION PROTOCOL 

Because the on-board computing resources of a mobile robot 
are often limited, the proposed solution is to have an external 
computer to run the agents dedicated to the two robots. This 
means each robot has as its high level decision system an 
agent. The two agents can communicate one with the other 
and with the robot under control. If the task to be solved 
becomes more complicated and further reasoning abilities are 
needed, then a scheme with the two agents running on two 
interconnected computers may be also taken into account, as 
shown in Fig. 3. 

The robots’ operation comprises two main parts: planning 
and execution. These must be interleaved in a specific 
manner, so that the imposed performance is obtained. The 
planning part is solved by the MAS, applying a distributed 
search; then, each agent knows the solution and can send to 
the corresponding mobile robot commands regarding the 
execution of necessary movements; they come back to 
planning when a change in their environment is detected. At a 
first decomposition level the agents’ activity is conducted 
according to the following scheme: 

 

Fig. 3. A multi-agent architecture to solve the navigation for 
two mobile robots 

Phase 1. Receive the initial robots position. 

Phase 2. Plan a whole path to obtain the robots’ meeting. 

Phase 3. Launch the execution of the planned path and then 
monitor the conducted robot movement. 

Phase 4. Take a decision in accordance with the information 
acquired from robots: if the goal position is to be reached in 
the next step, an approaching command is sent to each robot, 
then the mission is ended; if the sensorial information regards 
a blocked way, then go to Phase 1. 

The above cycle is explained as follows. Based on the initial 
information on the robots’ positions and the environment 
map an appropriate searching algorithm is carried out to find 
the solution for the robots’ movement. The proposed 
approach is for using the A* heuristic search in a distributed 
manner, because it offers certain advantages. The method 
provides both completeness and optimality (Robotin et al., 
2010, Russell and Norvig, 2003, Yokoo and Ishida, 2001). 

After the Phase 2 the two agents will know the entire optimal 
succession of ways connecting their initial positions (of 
course, one may exclude the case when no solution is 
possible). In the above description Phases 3 and 4 appear in 
sequence, but in fact they will be interleaved. This means an 
agent sends towards its robot a specific command depending 
on the sensorial information acquired from robot. Namely, 
when the planned way is obstructed the mobile robot 
sensorial system sends this information to its agent and the 
entire cycle is re-started through the agents’ coordination 
mechanism. Meanwhile, the two agents can detect the 
moment when the two robots are supposed to meet and thus 
they will inform the robots to apply a specific approaching 
procedure, so that they should come nearby without collision. 
To better clarify how the Phases 3 and 4 operate, further 
details are provided, explaining the agent coordination 
protocol and the way the decision about the next action is 
taken. Let us note Pi the current position of one robot and 
respectively Pj the present position for the other robot, while 
Pi+1 and Pj+1 are the next positions of the two robots. The 
developed protocol contains the following steps: 
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Step 1. If the agent received a message regarding a blocked 
way then it updates the map of the environment. 

Step 2. If the agent received a message regarding the next 
position of the partner robot, then it updates Pj and Pj+1. 

Step 3. If the agent received a message for re-planning then it 
sends the command to stop the controlled robot at the end of 
the current way; when this happens, Pi becomes Pi+1 and the 
agent continues with the Step 5. 

Step 4. If Pi = Pj then the agent sends to the robot the 
command to apply the approaching procedure and the cycle is 
ended. 

Step 5. The agent sends a message to the robot to check the 
way from Pi to Pi+1 together with the other ways connected to 
Pi and waits for the robot’s answer. For every way connected 
to Pi that was detected as blocked, the agent updates the 
environment map and sends the respective information to the 
partner agent.  

Step 6. If the way Pi to Pi+1 is blocked, the agent sends to the 
partner agent the message asking a re-planning phase and 
then it goes to the Phase 1.  

Step 7. If the agent received a message from the other agent 
for re-planning then it goes to Phase 1. 

Step 8. If the way from Pi to Pi+1 is not blocked then the agent 
tests for Pi+1 = Pj+1. If this condition holds  

    then: 

- it sends to the robot the command to go to Pi+1, to 
apply the approaching procedure and the cycle is ended; 

- it sends Pi+1 to the partner agent, as the next 
position. 

    else:  

- it sends to the robot the command to go to Pi+1; 

- it sends Pi+1 to the partner agent, as the next 
position. 

Step 9. The agent waits for the information from its robot 
regarding the reach of the commanded position. When this 
happens, Pi becomes Pi+1 and it goes to the Step 1. 

These steps regard the phases 3 and 4 in the above presented 
scheme and the connection with the phases 1 and 2, when 
needed. It is to remark that an agent based implementation 
overcomes a purely sequential operation. Namely, it is 
considered a BDI (Belief-Desire-Intention) agent 
architecture, as it can be obtained by making use of the Jack 
agent development environment (Wooldridge, 2001, Evertsz 
et. al., 2004). In an agent based implementation the execution 
is an event driven one (Padgham and Winikoff, 2004). This 
means an agent is waiting for events, mainly these meaning 
messages received from its environment. As already told, in 
our case an agent can receive messages from the other agent 
and from the controlled robot. These messages can 
asynchronously arrive and they will be kept in a queue. So, 

even if a message is not received during the waiting state 
within the Step 9, it will be kept and accordingly used. In 
fact, the Steps 1, 2 and 3 are carried out as soon as the 
corresponding messages are received and the agent ends the 
current operation. Thus, one can say that the agents can 
decide in almost real-time on the necessity of a re-planning 
stage, a present or next approaching procedure (the only 
possible delay regards the time spent by the agent to finalize 
the ongoing activity). Regarding the Steps 4 and 8, they are 
devoted to allow a smooth robots’ meeting without the need 
to a priori establish this moment. Thus, the robots can have 
different speeds and the coordination procedure allows a 
correct robots’ approaching. 

It is important to understand how the re-planning phase is 
launched and operates. It is started when a robot detects the 
next way in its path as being obstructed. Until that moment 
the corresponding agent had already sent to its partner both 
the present robot location (Pi) and the way that is blocked (Pi 
– Pi+1). According to the Step 2, the agent also received the 
present position of the other robot (Pj). Thus all the 
information for applying a new A* based search is available: 
the initial positions of the two robots and the updated map of 
the environment. As soon as a new entire path is found, this 
is sent for execution to the two agents, and they come back to 
the Phase 3. It is to remark that when the re-planning phase is 
asked, the agents have already exchanged information on all 
the environment changes produced since the last updating.  

Even during an execution without any obstacle appearance 
the agents send messages to each other, in order to be 
informed about the next positions to be reached, according to 
the Step 8. Thus, there is no need for other feedback so that 
the robot should have a meeting without collision. One can 
easily show that this holds in the proposed procedure for all 
the paths containing at least three segments. The only 
restricting supposition is that once a robot starts moving on a 
path it arrives at its end, because the way was checked to be 
free. The case of an obstacle being introduced on a way when 
a robot is already moving on it is not treated, but a 
corresponding feedback can be added to the developed 
mechanism. 

4. THE ALGORITHM TO FIND THE OPTIMAL PATH 

As already mentioned, a heuristic search was used to get the 
plan of the robots’ movement, namely the A* algorithm. As 
the considered application contains two agents an obvious 
construction would be to apply a distributed approach, like 
the one offered by the bidirectional search (Russell and 
Norvig, 2003, Yokoo and Ishida, 2001). The problem is that 
when applying A* in a bidirectional search, the performance 
of the method is highly dependent on the heuristic function 
depression. Namely, for a path planning problem (a case for 
which the difference between the values of the heuristic 
function for the successors of a node can be high) when 
trying to put into practice an efficient bidirectional search, the 
performance in the combined problem space is worse than 
when using the initial problem space (Yokoo and Ishida, 
2001). That is why the proposed approach is to avoid the 
drawbacks of making the search in the combined problem 
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space (this has n2 states when the initial space has only n 
states), but to further benefit by the use of a distributed 
bidirectional algorithm. Thus, the two agents know the initial 
and the goal states (according to the initial positions of the 
two robots) and apply A* with the corresponding initial data: 
the initial state for an agent is the goal state for the other one. 
The goal in each of the two searches is fixed and thus the 
initial problem space is kept, while the ending condition 
regards the moment when one agent finds a position that is 
already within the solution of the other agent. Some details of 
the constructed search procedure are further presented. 

The devised bidirectional A* search relies on the typical A* 
routine for finding successor nodes and it is implemented by 
each of the two agents according to the following protocol: 

Agent 1: 

(start node = initial position of Agent 1;  

 goal node = initial position of Agent 2) 

1. Use the typical A* strategy to choose a successor node 
(denoted by P1) 

2. Update the current path (best path to P1) 

3. Receive from Agent 2 its current path (denoted by Path2) 

4. IF P1 belongs to Path2 

  - construct the whole path by combining the current 
path to P1 with Path2 

  - send the whole path to Agent 2 

- exit the search algorithm and begin movement 

 ELSE 

  - go to 1 

 END IF 

Agent 2: 

(start node = initial position of Agent 2;  

 goal node = initial position of Agent 1) 

1. Use the typical A* strategy to choose a successor node 
(denoted by P2) 

2. Update the current path (best path to P2) and send it to 
Agent 1 

3. IF Agent 1 sends the whole path 

- exit the search algorithm and begin movement 

 ELSE 

  - go to 1 

 END IF 

Such a searching approach benefits from the complexity 
reduction determined by the bidirectional search (Russell and 

Norvig, 2003). In our case this is coupled with the fact that 
the two agents can work simultaneously and exchange 
messages to detect the moment when the solution was 
reached, which additional reduces the period for the solution 
reaching; of course in this case there is a time spent with the 
communication phase. 

5. ON THE AGENTS’ DESIGN AND IMPLEMENTATION 

The two agents are carried out in the programming 
environment named JACK and Fig. 4 represents their 
planning and execution design diagram (Padgham and M. 
Winikoff, 2004, JACK intelligent agents, 2005). The 
common agent structure is represented with continuous lines, 
while the entities specific for the Agent 1 are marked with 
discontinuous line, and the elements that appear only in the 
case of Agent 2 are represented with dotted line. As already 
mentioned, an agent has an event driven operation. The 
reception of a message represents an external event 
(ExternalMsg) that is treated by a corresponding plan, found 
in accordance with the message contents and the BDI 
mechanism. There will be internal events too, the ones that an 
agent is using to drive its activities, like the Planning and 
Execution BDI Events in Fig. 4. 

Three types of messages are used by agents and these 
determine the launching of corresponding plans: 

- messages regarding the need of a re-planning phase, 
containing as parameters the present robot position and the 
blocked way (the corresponding plan is labelled 
Re_PlanningMsg in Fig. 4). 

- messages concerning the present robot position, 
which are used when the partner agent has asked re-planning 
(these activate the plan called PresentPositionMsg in Fig. 4). 

- the third type of messages regards the path planning 
phase and this is different for the agent that is supposed to 
assemble the plan of the path – Agent 1, and respectively the 
other agent, called Agent 2. The Agent 1 sends a message 
after a plan was found for the entire path and the message 
contains this path (the plan PathMsg handles the message); 
Agent 2 sends messages containing the positions that it has 
already planned; such messages are handled by the plan 
NextPositionMsg. 

At the initial time, the planning process is started after each 
agent has received the other agent’s robot position. Through 
the PresentPositionMsg plan the Planning BDI Event is 
posted as an internal message. This activates the 
FindNextPosition Plan that materializes the corresponding 
searching algorithm, as described in the previous section.  

The agent’s knowledge is kept in three entities, named 
BeliefSets for JACK agents. Thus, the AgentPath beliefset 
stores the information on the path for the commanded robot. 
In the planning phase this knowledge base is filled in with the 
positions found through the A* algorithm, while during the 
execution it keeps the track of the robot’s movements. The 
OtherAgentPath beliefset contains the current position and 
the path planned by the other agent for its robot. The third  
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Fig. 4. The agents’ planning and execution diagram 

knowledge base, the Environment belief set holds the 
information about the map of the robots’ environment. All 
these belief sets are used by the FindNextPosition plan to 
determine the next robot planned position. This plan contains 
an additional action for the Agent 2, namely the one for 
sending a message regarding the next planned position 
towards the Agent 1 (this appears with dotted line in Fig. 4). 
The last action of the FindNextPosition plan posts a new 
PlanningBDIEvent message, thus resulting a loop (each 
iteration corresponds with an application of the algorithm 
presented in the previous section). This loop is ended when 
Agent 1 determines a coincidence between two positions 
within the belief sets AgentPath and OtherAgentPath. At that 
moment the EqualPositions plan is activated; this can 
compose the whole path to be traversed by the two robots. 
After that, the Agent 1 up-dates its belief sets and sends the 
entire path to the Agent 2 (as an external message). The 
Re_Planning plan is used after an external message regarding 
the need of a re-planning phase is received and it has as 
consequence the ceasing of the execution phase when the 
corresponding robot reaches the next position. After that both 
agents enter the planning cycle. 

The execution phase is started by different events for the two 
agents. Agent 1 starts its execution phase by launching the 
ExecutionBDIEvent from the EqualPositions plan. This event 
is handled by the NextPosition plan, which uses the agent’s 
belief sets to determine each movement This plan includes 
the tests within the Steps 2 and 5 of the algorithm presented 
in Section 3. The agent’s plan supposes a link with the 
physical robot by the means of a JACK view entity, which 
materializes the communication with the robot controller. As 
with the FindNextPosition plan, the NextPosition plan, which 
controls the execution phase, establishes a loop (see the 
algorithm in Section 3). This is ended by one of the following 

three situations. One case regards the moment when the test 
for the two robots’ positions shows they are supposed to 
meet. The second ending condition appears when the test 
regarding an obstructed way has a positive result; in this case 
the agent sends an external message to inform the partner 
agent and to restart its planning phase. The third situation is 
when according to the agent’s AgentPath beliefset its next 
robot position is not available, as a consequence of receiving 
an external re-planning message from the other agent. The 
execution phase is similar for the Agent 2, except for its 
starting condition that is determined by the PathMsg plan. 

The structure of Fig. 4 conducted the development of JACK 
agents and these can run on the same computer, or they can 
be deployed on distinct networked computers. 

6. EXPERIMENTAL RESULTS 

This paper regards an on-going research. The plan is to 
couple the two agents with two Khepera type mobile robots. 
Until now only some simulation experiments have been 
conducted to prove the efficiency and adequacy of the 
proposed scheme, the performance of the agent based path 
searching mechanism and of the agents’ coordination 
protocol.  

A sequence of situations obtained within an illustrative 
scenario is presented in Figs. 5, 6 and 7. 

One can see in Fig. 5 the initial robots’ positions (marked 
with red and blue colours) and the map of their environment. 
The experiment considers the case when the nodes in the 
searching graph will have one or two successors. The weight 
of edges is proportional with the length of ways. Thus, in our 
case the weight of horizontal edges is 1, while the oblique 

edges have the cost of 2 , except for the edges that 
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correspond to the ways between positions 5 and 8, 24 and 32 

which have the weight of 5 . The optimal path for this map 
consists in the following succession of positions: 1 – 2 – 4 – 
11 – 17 – 21 – 27 – 33 – 36 – 38. In fact, the Agent 1 (the one 
for the red robot) detected the path from position 1 to 21, and 
the Agent 2 the path from 38 to 11, and then the node 
corresponding to the position labelled 21 is detected by the 
Agent 1 in both agents’ paths and the searching processes 
were ended, the result being the optimal solution. The image 
in Fig. 6 shows that in our experiment five ways were 
successively detected as being obstructed.  
 

 

Fig. 5. The environment map and initial positions of robots  

 

Fig. 6. The environment with several obstructed ways 

This is a difficult case, as the two agents have had to re-plan 
their path three times. Thus, first the robots begin with the 
path having the minimal cost and when the red robot is in the 
position 4, both possibilities to continue are being obstructed 
(see Fig. 6). The optimal path in these new conditions is the 
one through the positions: 2 – 5 – 9 – 16 – 20 for the first 
robot (as discovered by the Agent 1), and 36 – 32 – 25 – 20 
for the second one. A further blocked way appears (16 – 20) 
and the agents carry out another planning phase. The 
reconfigured path is: 9 – 5 – 2 – 1 – 3 – 7 – 13 – 18 – 22 for 
the red robot, and 25 – 32 – 36 – 38 – 37 – 34 – 28 – 22 for  

 

Fig. 7. The robots in the meeting position 

 

Fig. 8. A case with a large number of blocked ways 
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the blue one. The two paths are traversed until the first robot 
is in the position 7 and the second robot is in the position 34. 
By that time, the blue robot detects the two blocked ways and 
asks for the re-planning phase. The agents are able to find a 
new solution, this being: 7 – 3 – 6 – 14 – 19 – 23 for the first 
robot, and 34 – 37 – 35 – 30 – 23 for the second one, which is 
again the optimal one for the current environment. By 
making use of this plan the robots successfully meet in 
position 23, as shown in Fig. 7 obtained in our simulation.  

Even the distributed solution has visible advantages in the 
common cases, it may appear that when a large number of 
blocked ways occurs the multi-robot solution is not better 
than a single robot one. Such a case is presented in Fig. 8. 
The positions 1 and 5 are the robots’ initial places. The 
scenario involves several movement attempts. First, the 
optimal routes are 1 – 3 – 4 for the red robot and 5 – 4 for the 
blue one. The robots start the movement on these paths and 
when reaching the positions 3 and respectively 4, the ways 3 
– 4, 3 – 6 and 4 – 6 become obstructed. The new re-planned 
path is 3 – 2 – 8 – 6 for the first robot, and 4 – 5 – 6 for the 
second robot. After carrying out a single movement, when the 
robots are in the positions 2 and 5, the way between 2 and 8 
becomes obstructed. A new reconfigured path is 2 – 3 – 1 – 8, 
coupled with 5 – 6 – 8. 

After two movement steps of the two robots, the first of them 
detects the blocked way between the positions 1 and 8, while 
the second one observes the obstructed way between the 
positions 8 and 9. After a further re-planning, the path  1 – 9  
– 7 – 5 is used by the first robot, while the second robot 
traverses the route 8 – 6 – 5. Thus, the meeting position is the 
initial place of the blue robot. Though in this scenario the 
distributed solution seems to provide no advantage (it appears 
that the first robot had to traverse the whole path), it is to 
remark that the second robot influences a faster reaching of 
the solution through its sensorial acquisition. So, this robot is 
the one that detects the obstructed way between the positions 
8 and 9, and this information being provided to the agent of 
the red robot allows it to reduce the number of re-planning 
phases. 

7. CONCLUSIONS 

The proposed architecture is an additional example on how 
the AI techniques can determine an improved solution for 
Robotics. The way planning and execution are interleaved 
and the robots are coordinated by the means of an MAS allow 
the system to face a dynamic environment. Even when 
several changes appear during the robots’ movement, their 
decisional system is able to reconfigure the path in an optimal 
way. It is to mention that the sensorial system considered for 
the mobile robots can be a simple one, as only the presence of 
the obstacles has to be detected. 

The agent based solution has distinct advantages regarding 
the way a dynamic environment can be handled. An 
environment modification is producing an event that can be 
appropriately treated by the provided plans. The BDI agents’ 
reasoning mechanism determines a robust planning scheme 
because more plans can be devised for the same event; these 
will be chosen by a suitable filtering scheme, and used one 

after the other when failures appear. Thus the proposed 
application can be enhanced, so that the planning phase 
should be conducted by more decision criteria: if there is no 
dangerous area find the shortest path, when such an area 
exists find a path that avoids the robots’ approaching the 
prohibited places. 

This paper focused on developing an efficient planning and 
coordination protocol on a finite-state representation of the 
problem. The connection between this solution and a real 
robotic scenario was maintained by various AI tools for 
environment detection and abstraction and for robot control. 
Although the involved bidirectional search algorithm implies 
a computationally feasible method, it prevents the direct 
scaling of the current scenario to more than two robots. 

As future work, we plan to extend the approach to more 
robots and to use Khepera type robots for carrying out real 
experiments of the proposed techniques. It is to further study 
if the bidirectional search can be extended for the case of 
three robots that are supposed to meet by repeating the 
procedure for pairs of robots, or the whole algorithm has to 
be redesigned. 
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