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Abstract: Concerning the effect of internal noise and communication delay in the synchronized process, 
we introduce a noise-perturbed complex network dynamical model and design an adaptive feedback 
controller to synchronize the proposed network.  Based on invariance principle of stochastic time-delay 
differential equations, a sufficient condition in terms of linear matrix inequality is derived to guarantee 
global synchronization of the network via the adaptive controller. The analytical results show that the 
adaptive control scheme is of robustness against the noise resulted from the internal synchronized errors. 
Finally, a numerical simulation is provided to verify the effectiveness of the adaptive strategy. 

Keywords: synchronization, complex networks, noised-perturbed, time-delay 

 

1. INTRODUCTION 

Recently, synchronization of coupled chaotic oscillators has 
attracted a great number of researchers. This is partly due to 
that complex networks of coupled chaotic oscillators have 
been widely used to describe various complex systems in 
biophysics, neuroscience, and technology (Boccaletti, Kurths, 
Osipov, Valladares, and Zhou, 2002; Belykh, Belykh, and 
Hasler, 2004; Lü and Chen, 2005; Boccaletti, Wang, Chavez,  
Amann, and Pecora, 2006). Yet in practice, such 
synchronization is urgently expected. For example, Peskin 
(1975) reported that synchronous beats of the heart cells are 
regulated by the activity of the pacemaker cells situated at the 
sinoatrial node. Then it is necessary to design a controller to 
guarantee the synchronization, which is also called 
synchronization control. In this endeavor, much valuable 
work shows that the synchronization behavior can be boosted 
or eliminated by feedback control based on those complex 
dynamical network models with deterministic structures and 
coupling relationships. Therefore, it is potentially of great 
significance to investigate synchronization control problem 
of dynamical systems on complex networks. 

During the past decade, distributed synchronization control of 
complex networks has attracted a great deal of attention. 
Sorrentino, Bernardo, Garofalo, and Chen (2007) suggested 
that the controllability of a coupled complex network via 
pinning can be assessed by means of a Master Stability 
Function approach. Wang and Sun (2010) studied the 
robustness problem of pinning a general complex dynamical 
network, particularly for some changes on network 
architecture. Chen, Liu, and Lu (2007) pointed out that a 
general complex network can be pinned by a single controller 
if the coupling strength is large enough. Wang and Chen 
(2002) investigated the control problem for a scale-free 
dynamical network by applying local feedback injections to a 

fraction of network nodes. Wu, Wei, Li, and Xiao (2009) 
investigated the pinning control strategy for stabilizing a 
complex network with uncertain couplings to a homogenous 
orbit based on the V-stability tool, which associates the 
dynamics of the nodes with passivity degrees. 
Note that, in engineering practice, the dynamics of each node 
in complex networks can not be precisely observed due to 
external disturbance, so that the analysis of network 
synchronization becomes much more complex (Wu, Wei, Li, 
and Xiao, 2009; Zhang, Li, and Lin, 2008). The influence of 
noise on the behaviors of nonlinear network communication 
among the sensors is very diverse which might cause the 
multiple nodes system to diverge or oscillate. How to control 
the appearance of synchronized states in the dynamical 
networks is of great significance in theory and potential 
applications. Xiao and Xu (2009) designed an adaptive-
feedback controller to synchronize a class of noise-perturbed 
two bi-directionally coupled chaotic systems with time-delay. 
Sun and Cao (2007) investigated lag synchronization for two 
coupled chaotic systems with noise perturbation and 
unknown DNNs.  
However, most of these investigations have focused on two 
coupled chaotic systems, and few works have addressed the 
effects of external noise-perturbed for complex coupled 
network systems. To solve the synchronized problems for the 
multiple nodes of complex network systems is a challenging 
task, because the nonlinear coupling between nodes and 
external disturbances in many real-world systems will 
aggravate difficulties in analyzing the synchronized errors 
trajectory of the controlled network. Besides, once the 
topology with communication delay is involved, the analysis 
of synchronization for networks becomes much more 
complex. With this background, we study the 
synchronization control for a class of noise-perturbed 
networks with communication time-delay.  
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In this paper, we attempt to investigate the stability of 
synchronized error system with the effect of internal noise 
and communication delay in the synchronized process. In 
doing the analysis, we obtain the dynamical model of the 
synchronized errors for the complex networks. Then, based 
on invariance principle of stochastic time-delay differential 
equations, we investigate how to design the controller for 
synchronization of the complex network systems with time-
delay and noise-perturbed. Finally, synchronization is 
achieved globally for the multiple nodes of network systems 
from effects of noise and time-delay. The analytical results 
show that the controller has a certain robustness against the 
noise resulted from the internal synchronized errors. 
The paper is organized as follows. In Section 2, we present a 
model for a class of noise-perturbed complex network 
systems with time-delay and define the problem addressed. 
The main converging results of the noise-perturbed complex 
dynamical network with communication time-delay systems 
are brought forth in Section 3. Following that, Section 4 gives 
the simulation result. Finally, some conclusions are drawn in 
Section 5. 

   2. SYSTEM MODEL 

Generally, a complex network consisting of n identical nodes 
with communication time-delay in the presence of d-
dimensional nonlinear vector can be formulated as  

   ( ) ( ) ( ( ) ( ))i i ij j ij i
x t f x a x t x tτ τ

≠
= + − − −∑                    (1) 

where d
ix R∈  is the state vector, , 1, , .i j n=   τ is the time 

delay of the network transmission.  The initial condition of  
(1) are given by  [ ]( ) ( ) ( ,0 , )( 1, 2, , )d

i ix t t C R i nϕ τ= ∈ − =  . 

Here, [ ]( ,0 , )dC Rτ−   denotes the set of all continuous 

functions from [ ],0τ−  to dR .  1( , , ) :T d d
df f f R R= →  is 

a smooth vector function. The weighted adjacency matrix 

ijA a =     is the configuration coupling matrix representing 
the topological structure of the network, in which the 
coupling strengths ija are defined as follows: if there is a 
connection between node i and node ( )j j i≠ , then 0ija > ; 
otherwise 0ija = .  
Assume the desired target trajectory ( )s t  driven by the 
dynamical equation 

( ) ( ( ))s t f s t=     
where, ( ) ds t R∈  called synchronization state which is 
usually an equilibrium point, a periodic orbit, an aperiodic 
orbit or a chaotic orbit.                      
Define the synchronized error vector 
                                ( ) ( ) ( ), 1, , .i ie t x t s t i n= − =   
where 1 2( , , , )T d

i i i ide e e e R= ∈ . 
In fact, the coupled systems are inevitably affected by 
different environment. Particularly, the noise is resulted from 
the internal synchronized errors. From the perspective of 
control theory, designing controllers is an effective method in 
synchronizing a complex network of coupled dynamical 

systems. The goal of control is to achieve complete 
synchronization. 
Considering a controlled network consisting of n identical 
nodes, we assume that the noisy non-linear dynamics of each 
synchronized  error is  

( ) ( ( ( ) ( ( ))) ( ( ) ( ))i i ij j ij i
de t f x t f s t dt a e t e t dtτ τ

≠
= − + − − −∑               

( , ( ), ( )) ( ) ( )i i i i it e t e t dw t u t dtσ τ+ − + ,  1, ,i n=     (2)  

where, ( ) d
iu t R∈  is the control input, [ ]1( ) ( ), , ( ) T

i i idw t w t w t=   
is d-dimensional Brownian motion defined on a complete 
probability space ( ), ,F ψΩ with a natural filtration { } 0t tF

≥
 

generated by ( ){ }: 0iw s s t≤ ≤ , where Ω is associated with 

the canonical space generated by ( )iw t , and F  is associated 
with σ -algebra generated by { }( )iw t  with the probability 

measure ψ .  Moreover, [ ]1( ) ( ), , ( ) T nd
nddw t t t Rη η= ∈  is the 

white noise, in which every two elements are statistically 
independent, ( ) ( ) ( )( , 1, , )i j ijE t t t t i j ndη η δ δ′ ′  = − =   , the 

mathematical expectation [ ] 0iE η = . It is noted that the noise 
intensity 1 1 1{ ( ( ), ( )), , ( ( ), ( ))}i i i i id id iddiag e t e t e t e tσ σ τ σ τ= − −    
for 0 i n≤ ≤  is intrinsic to the dynamical system in the 
synchronized process (i.e. independent of the inputs), which 
is consistent with experimental findings by the synchronized 
error. iσ  is continuous nonlinear matrix-valued function, 
which is usually called the noise coupling strength function, 
and ( ,0,0) 0i tσ ≡ .  
The initial condition associated with system (2) is given in 
the following form: 
                    ( ) ( )i ie θ φ θ=  , 0τ θ− ≤ ≤ , 1, ,i n=               (3) 
where, the initial data [ ]( ,0 , )d

i C Rφ τ∈ −  is a continuous 

function satisfying that  
20

( )iE d
τ

φ θ θ
−

< ∞∫ . 

Throughout this paper, the following Assumptions are need: 
Assumption 1. Suppose that ( )f ⋅   satisfies a Lipschitz 
condition. That is, there exists a Lipschitz constant α  such 
that ( ( )) ( ( )) ( ) ( )i if x t f s t x t s tα− ≤ −  for 0 i n≤ ≤ , and 

(0) 0f ≡ . 
Assumption 2. Suppose that  ( , , )i t x yσ  satisfies the 
Lipschitz condition for 1, ,i n∀ =  . Moreover, there exist 
constant matrices of appropriate dimensions 1iG , 2iG such 
that 

( , , ) ( , , )T
i itrace t x y t x yσ σ  ≤ 

2 2
1 2 ,i iG x G y+ ( , , ) d dt x y R R R+∀ ∈ × × . 

The assumption of ( ,0,0) 0i tσ ≡  if ( ) 0ie t ≡ , and the 
Assumptions 1-2 make sure that  is a trivial solution of the 
synchronized  error vector ( )ie t  on t τ≥ − .  
Under Assumptions 1-2, this paper is devoted to design the 
controller to reach synchronization for networks consisting of 
n identical nodes in the presence of d-dimensional noisy. 
Synchronization of the noise-perturbed network (2) is 
guaranteed if error vector ( )ie t  is asymptotically stable in 
mean square with the initial condition (3), in sense that  
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{ }2lim ( ) 0, 1, ,t iE e t i n→∞ = ∀ =   

where,  ⋅  denotes the Euclidean norm, {}E ⋅ denotes 
expectation. 

3. ADAPTIVE CONTROLLER DESIGN 

This section presents an adaptive controller to synchronize   
the noise-perturbed network systems with propagation delay.  
Given the dynamical system (2), Note that ( ) 0i tσ ≡  when 

( )ie t  is equal to zero. However, if the feedback gains are 
fixed, the feedback energy must be the maximal when the 
synchronization is achieved. It further indicates that the 
traditional linear feedback control means a kind of waste in 
practice. To make economical use of energy, we choose an 
adaptive synchronization controller and a noise-perturbed 
update laws of parameters. We introduce the adaptive 
feedback gains controller ( )iu t  

( )i i iu t eε= −   
2

ij ij ijeε γ= , 1, , .i n=   1, , .j d=                          (4) 
where 0, ( 1, , )i i nγ > =   are arbitrary constants. 

{ }1, ,i i iddiagε ε ε=  
 is the adaptive-feedback gain matrix 

with nonzero initial value (0)iε . We separate the adaptive-
feedback gain iε  with zero initial value and the initial 
feedback gain (0)iε  from iε . It is worth pointing out that iε  
will be automatically adjusted to a suitable constant in the 
process of network synchronization, which is different from 
the traditional linear feedback.  
Then, the dynamical equation of  ( )ie t  is 

( ) [ ( ( )) ( ( )) ( ( ) ( )) ( )i i ji j i i ij i
d et f x t f s t a e t e t e tτ τ ε

≠
= − + − − − −∑     

        (0) ( )] ( ( ) ( ), ( ) ( )) ( )i i i j i j i ie t d t e t e t e t e t d wtε τ σ τ τ− − + − − − −       (5) 
It’s easy to see that the dynamics (5) can also be described as 

0( ) [ ( ) ( ) ( ) ( ) ( )]dd et Jf t L I e t e t e t d tτ ε ε τ∧ ∧= − ⊗ − − − −  
( , ( ), ( )) ( )t e t e t d wtσ τ∧+ −                                             (6) 

where,  1( , , )T nd
ne e e R= ∈  is the state error vector, 

1( , , )T nd
nw w w R= ∈ , [ ]1( ) ( ( )) ( ( )), , ( ( )) ( ( )) T

nJf t f x t f s t f x t f s t= − −  

, { }1, , ndiagσ σ σ∧ =  ,   { }1, , ndiagε ε ε∧ =  ,  { }0 1(0), , (0)ndiagε ε ε∧ =  , ⊗  
is the Kronecker product notation, L  is the Laplacian matrix 
of the weighted digraph. Correspondingly, the Laplacian 
matrix is defined as ijL l =   , where ii il d= and 

, .ii ijl a i j= − ≠  
1

n
i ijj

d a
=

= ∑  for , 1, , .i j n=   

By (6), we find that 0εΛ  could be considered as a linear fixed 
feedback diagonal matrix, whose elements are not all zero. It 
is evident that 

0( ) [ ( ) ( ) ( ) ( )]dd et Jf t L I e t e t d tε τ ε∧ ∧= − ⊗ + − −   
( , ( ), ( )) ( )t e t e t d wtσ τ∧+ −                                (7) 

Then, the following provides a sufficient condition to 
guarantee all nodes are synchronized to the desired noise-free 
system by designing the controller 0εΛ , and the error 
dynamical system (7) is globally stable with the initial 
condition (0)e . 

Theorem 1. Under the Assumptions 1-2, the noise-perturbed 
response system (7) achieves global synchronization with 

(0)e , if there exist positive definite matrix nd ndQ R ×∈  and 
constant diagonal matrix B satisfying 

                          11 12

12 22

0T

H H
H

H H
 

= < 
 

                                (8) 

where 

11 1 1

12 0

22 2 2

1
2

1 ( )
2

1
2

T
nd

d

T

H Q I B G G

H L I

H Q G G

α

ε∧

= + ⊗ + +

= − ⊗ +

= − +

 

and { }1 11 1, , nG diag G G=   , { }2 21 2, , nG diag G G=  , 

{ }1, , nB diag b b=  , { }1, ,i i idb diag b b=  , 1G  and 2G  are 
the noise coupling constant matrices for  ( , , )i t x yσ . 
Proof. Based on the LaSalle-type invariance principle for 
stochastic differential equation with time delay (Mao, 2002),  
we introduce the continuous differential non-negative 
function: 

     1( , ( ), ( )) ( ) ( )
2

tT T

t
V t e t e t e e e s Qe s d s

τ
τ

−
− = + ∫        

                              2
1 1

1 ( )
2

n d
ij iji j

ij

b ε
γ= =

+ +∑ ∑           (9) 

where Q  is a positive definite matrix, and 

ijb ( 1, , . 1, , )i n j d= =   are constants to be determined. 
The stochastic derivative of V along the trajectory of error 
system (7) can be expressed by 

( , ( ), ( )) ( , ( )) ( , ( ))t eDV t e t e t V t e t V t e tτ− = ∂ + ∂  

[ ]0( ) ( ) ( ) ( )dJf t L I e t e tε τ εΛ Λ⋅ − ⊗ + − −  

1
( ( , ( ), ( )) ( , ( )) ( , ( ), ( )))

2
T

eetra ce t e t e t V t e t t e t e tσ τ σ τ∧ ∧− −+  

where 

1

( , ( )) ( , ( ))
( , ( )) , ,e e

e
n

V t e t V t e t
V t e t

e e
 ∂ ∂

∂ =  ∂ ∂ 
  

2 ( , ( ))( , ( ))ee
i j n n

V t e tV t e t
e e

×

 ∂
=   ∂ ∂ 

 

From Eq. (9) and the dynamics of system (7), we have 

2
1 1

( , ( )) ( ) ( ) ( ) ( )

( )

T T
t

n d
ij ij iji j

V t e t e t Qe t e t Qe t

b e

τ τ

ε
= =

∂ = − − −

+ +∑ ∑
 

By above analysis, we obtain that 
( , ( ), ( ))DV t e t e t τ−  

2
1 1

( ) ( ) ( ) ( ) ( )n dT T
ij ij iji j

e t Qe t e t Qe t b eτ τ ε
= =

= − − − + +∑ ∑  

0( ) ( ) ( )( ) ( ) ( ) ( )T T T
de t Jf t e t L I e t e t e tε τ ε∧ ∧+ − ⊗ + − −

1

1 ( ( , ( ), ( )) ( , ( ), ( )))
2

n T
i

tra ce t e t e t t e t e tσ τ σ τ∧ ∧=
+ − −∑  

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

T T T T

T T T
d

e t Qe t e t Qe t e t Be t e t e t
e t Jf t e t L I e t e t e t

τ τ ε

ε τ ε
∧

∧ ∧

= − − − + +

+ − ⊗ + − −
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1

1 ( ( , ( ), ( )) ( , ( ), ( )))
2

n T
i

tra ce t e t e t t e t e tσ τ σ τ∧ ∧=
+ − −∑

0

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

T T T

T T
d

e t Qe t e t Qe t e t Be t
e t Jf t e t L I e t

τ τ
ε τ∧

= − − − +

+ − ⊗ + −

1

1 ( ( , ( ), ( )) ( , ( ), ( )))
2

n T
i

tra ce t e t e t t e t e tσ τ σ τ∧ ∧=
+ − −∑  

Under Assumptions 1-2, then we have 
( , ( ), ( ))DV t e t e t τ−  

0

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

T T T T

T
nd d

e t Qe t e t Qe t e t Be t e t
I e t e t L I e t

τ τ

α ε τ∧

≤ − − − + +

⋅ ⊗ − ⊗ + −

1 1 2 21

1 ( ( ) ( ) ( ) ( ))
2

n T T T T
i i i i i i i ii

e t G G e t e t G G e tτ τ
=

+ + − −∑  

1 1 0

( ) ( ) ( )( ) ( ) ( ) ( )
1 ( ) ( ) ( )( ) ( )
2

T T T
nd

T T T
d

e t Qe t e t I e t e t Be t

e t G G e t e t L I e t

α

ε τ∧

= + ⊗ +

+ − ⊗ + −

2 2
1 ( ) ( )
2

T Te t G G e tτ τ+ − − ( ) ( )Te t Qe tτ τ− − −  

11 12

12 22

( ) ( )
( ) ( )

T

T

H He t e t
H He t e tτ τ

    
=     − −    

                                    

(10) 
Then, a sufficient condition for 0DV <  holds if and only if 

0H < . 
From (10) and It ô  formula, it is obvious to see that 

                { } { } { }
0

0( ) ( ) ( )
t

t
E V t E V t E DV s d s− = ∫                (11) 

By the definition of ( )V t in (9), there exits a positive constant 

1λ  such that 

{ } { } { } { }
0

2
1 0( ) ( ) ( ) ( )

t

t
E e t E V t E V t E V s d sλ ≤ ≤ + ∫  

{ } { }
0

2
0 max( ) ( )

t

t
E V t E e s dsλ≤ + ∫                                        (12) 

where maxλ  is the maximal eigenvalue of H  and it is 
negative. 
Therefore, from (12) and the discussion in Ref. (Kushner, 

1967), we know that { }2( ) 0E e t → , the error dynamical 

system (7) is globally asymptotically stable in mean square to 
guarantee synchronization of the network. This completes the 
proof. 
From Theorem 1, we can see that the adaptive-feedback 
controller can synchronize the complex networks with 
communication time-delay, which is related to the noise 
intensity matrix 1iG , 2iG . It fits well to the engineering 
practice. At the same time, the analytical results show that the 
adaptive-feedback controller has a certain robustness against 
the noise resulted from the internal synchronized errors. The 
theorem provides a sufficient condition to design the 
controller for the networks which guarantee that all nodes 
achieve synchronization. 
It is obvious that H  is a real symmetric and linear matrix. 
Since every diagonal entry of B  is to be determined, 
according to the theory of linear matrix inequality, we can 
find a positive definite matrix Q  to ensure that H  is 
definitely negative if B is negative and small enough, so that 

we obtain the feedback control parameters 
{ }0 1(0), , (0)ndiagε ε ε∧ =  .  

4. A NUMERICAL SIMULATION 

In this section, a simulation is given to illustrate the 
theoretical results obtained in the previous sections. Assume 
that the controlled network (1) consists of 4 identical Chua 
systems, where the node dynamics is given by  

1 1 2 1 1

2 2 1 2 3 3

3 4 2

( ( ))
( )

i i i i

i i i i

i i

x c x x q x
x c x x c x
x c x

− +   
   = − +   
   −   







 

where ( )q ⋅  is a piecewise linear function of the form 

6 1 5 6 1

1 5 1 1

6 1 5 6 1

1
( ) 1

1

i i

i i i

i i

c x c c x
q x c x x

c x c c x

− − + >
= − ≤
− + − < −

 

in which 0ic >  with 1, 2,3, 4i =  and 5 6 0c c< < . If the 
system parameters are chosen to be 

1 2 3 4 5 67, 0.35, 0.5, 7, 5.714, 0.143c c c c c c= = = = = − = −  
Obviously, function ( )f ⋅ satisfies Assumption 1. Then 
Chua’s oscillator has a chaotic attractor shown in Figure 1. 

 

Fig. 1. The chaotic attractor of Chua’s oscillator 
Consider that the network obeys topological structure of the 
network model, where the graph Laplacian is defined as 

2 1 0 1
1 2 1 0

0 1 2 1
1 0 1 2

L

− − 
 − − =
 − −
 
− − 

 

According to the effect of the coupling, internal noise and 
parametric mismatch, we set the noise intensity  

( , ( ), ( ))t e t e tτσ ∧  

1 3 1 1 3 1

2 3 1 2 3 1

3 3 1 3 3 1

4 3 1 4 3 1

( ) ( ) 0 0 0

0 ( ) ( ) 0 0

0 0 ( ) ( ) 0

0 0 0 ( ) ( )

a I e t b I e t

a I e t b I e t

a I e t b I e t

a I e t b I e t

τ

τ

τ

τ

+

+
=

+

+

 
 
 
 
 
 

 

and ( )w t  is a 4-dimensional Brownian motion satisfying 
Assumption 2, it is easy to get 
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1 1 2 3 4 34 ( , , , )G diag a a a a I= ⊗  ,  

2 1 2 3 4 34 ( , , , )G diag b b b b I= ⊗ . 
The parameters in the complex network systems are taken as 

1 0.1a = , 2 0.3a = , 3 0.3a = − , 4 0.2a = − , 1 0.2b = , 

2 0.4b = − , 3 0.5b = , 4 0.4b = , time-delay 1τ = , 0 Iε∧ = , the 
white noise ( )iw t  is shown in Figure 2, which satisfy the 
condition in Theorem 1. Therefore the noise-perturbed 
complex networks with communication time-delay can be 
synchronized. 
 

 
Fig. 2. The white noise ( )iw t  of the network  

Now, we present the simulation result for synchronization 
problems of the complex networks with noise-perturbed and 
communication time-delay.  Figure 3 shows the state error 
trajectories with noise in the controlled network, where 
synchronization index { } { }( ) ( ) ( )i iE e t E x t s t= − . Clearly, 
from Figure 3, synchronization is achieved. The numerical 
result shows that the approach of proposed adaptive 
synchronization is very effective. 
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3

E
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3 ||

 }
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-1
0
1
2
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E
{ |

|e
4 ||

 }

t (s)  
Fig. 3. The synchronization errors of the controlled network 

5. CONCLUSIONS 

Communication delay and noise are inevitable in modelling, 
controlling, and optimizing complex systems. However, the 
two factors are difficult to be handled by traditional 
techniques, especially for large-scale systems. In this paper, 

we investigate synchronization control for complex networks 
with the effect of internal noise and communication delay 
existing in many real-world systems. A noise-perturbed 
complex delayed network dynamical model is introduced. 
Based on invariance principle of stochastic time-delay 
differential equations, we investigate how to design the 
adaptive controller for synchronization of the networks with 
noise and communication delay. Moreover, a stability 
criterion in the terms of linear matrix inequalities is 
established for global synchronization of the controlled 
dynamical networks. Finally, we demonstrate its 
practicability through computer simulation. As has been 
shown by analytical and numerical result, the proposed 
controller has strong robustness against the effect of internal 
noise and communication delay, which could be commonly 
applied to realistic situations of engineering. 
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