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Abstract: The new generation of microcontrollers on 32 bits allows the implementation of fast and 
complex controlling algorithms, like robust control. In the present paper the advantages of robust control 
will be presented in comparison with classic PI controller design using root locus method. The frequency 
controlled series resonant load induction heating inverter model will be presented with uncertainties 
together with the design approach for computing H∞ and PI controller. Simulation results will be 
compared for the same plant using the two controllers. 
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                             1. INTRODUCTION 

The presence of high speed microcontrollers and DSPs makes 
available the development of advanced and complex control 
techniques like: fuzzy control (Tomse, 2007) self tuning PID 
control (Uchihori, 1995) Lyapunov-Based Frequency-Shift 
Power Control (Kelemen, 2009) and robust control 
(Szelitzky, 2010). The present paper proposes the design of a 
robust controller for frequency controlled series load 
induction heating inverter. 

The advantages of robust control will be presented in 
comparison with a PI controller tuned using root locus. The 
controlled plant is a 15kHz 3.5kW power induction heating 
inverter, heating a 50mm diameter and 70mm long copper 
bar.  

Induction heating is an efficient and clean heating method. 
The work piece is heated directly through Joule-Lenz effect 
of the eddy currents induced by a variable electromagnetic 
field. The electromagnetic field is generated by high 
frequency alternating current passing the inductor. 

To control the output variables of the inverter the following 
methods was in the past developed (Fujita, 1993): 

Varying inverter supply voltage: 

controlled rectifier, (by adjusting the firing angles of the 
thyristors, inverter supply voltage is altered) 

DC-DC power supply, (the inverter supply voltage is altered 
by a variable voltage DC to DC power supply) 

Varying through inverter: 

pulse width control, (by adjusting the pulse width of the 
driving signals of the power transistors, inverter output 
parameters are altered) 

frequency control, (the increase or decrease of the switching 
frequency relative to resonant frequency all output 
parameters of the inverter are decreased) 

phase control, (by adjusting the phase difference between 
power transistors in diagonal, output parameters of the 
inverter is controlled) 

In our case the frequency control was chosen to adjust the 
resonant capacitor voltage. The block diagram of the 
induction heating inverter studied in this paper is presented in 
figure 1. 

 

Fig. 1. Block diagram of frequency controlled induction           
heating inverter. 

The ratio between capacitor voltage and supply voltage with 
respect to switching frequency and resonant frequency ratio 
can be observed in figure 2. As it can be seen, the further the 
switching frequency is from the resonant frequency of the 
load circuit, the capacitor voltage decreases. 

 

Fig. 2. Capacitor voltage/supply voltage vs 
frequency/resonant frequency. 

The dependency between supply voltage and resonant 
capacitor voltage is described by the equation (Iordache, 
2000): 
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Where the quality factor has the following form: 

R

L
Q 0

             (2) 

1.2  Power transistor driving signals 

The driving signals of the power transistors for this power 
control are square waves with 50% duty cycle. In practice we 
have to choose a dead time which has as effect the reduction 
of the duty cycle. This dead time has to be taken sufficient 
long so that the parasitic capacitors of the switches can be 
charged or discharged (Kazimierczuk, 1995). For the bridge 
topology (4 transistors) we have the following driving 
signals. 

 

Fig. 3. Ideal transistor driving signals. 

The bridge topology has the following electric circuit: 

         

Fig. 4. Bridge topology. 

In the series resonant load inverters, the power switches (the 
transistors) has to be bidirectional for current and 
unidirectional for voltage, because of phase difference 
between the resonant voltage and current, there are some time 
intervals in which power is transferred from the load to the 
power supply (Dede, 1991). 

                           2. PROCESS DESCRIPTION 

The induction heating inverter controlled in the present paper 
consists of 4 ideal transistors feeding a series resonant load 
circuit. The load circuit consist of a capacitor, matching 
transformer and the inductor. The inductor is represented 
through an ideal coil (R=0) and a resistor. The schematic of 
the circuit is presented in figure 5. This circuit through simple 
circuit solving methods can be simplified into RLC series 
circuit. 

    

 Fig. 5. Resonant circuit. 

For the simulations the heated material is chosen copper. This 
means that the inductivity change is not significant in 
comparison with resistor value changes. To obtain the values 
of R and L the following inductor work piece geometry was 
used: 

 

Fig. 6. Inductor geometry. 

To estimate the equivalent resistance and inductivity of the 
inductor-work piece, FEMM 4.2 was used a finite element 
methods program. The equivalent resistors value was 
calculated to vary between 0.25Ω and 0.66Ω. The 0.25Ω is 
for the inductor with copper at room temperature and 0.66Ω 
is considered for inductor full with molten copper. 

Resistor and quality factor dependency in function of 
temperature can be observed in figure 7. 

 

Fig. 7. Quality factor and equivalent resistor value vs. 
temperature. 
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The effect of increase of resistor value with temperature is 
the decrease of the quality factor of the resonant circuit. For 
the inductor with copper at room temperature the quality 
factor is 11.7 and for the inductor full with molten copper the 
circuit’s quality factor is 4.6. 

                         3. H∞ ROBUST CONTROL 

The H∞ robust controller synthesis consist of finding such a 
controller K which keeps the infinity norm of the output z of 
the plant G under a given value, while achieving robust 
stability and performance in presence of uncertainty 
(Toivonen, 1998) (Damen, 2002). 

Let’s consider the following representation of the plant G: 
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Where G can be written in form: 
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The aim is to find a controller which stabilizes the system and 
minimizes the H∞ norm of the lower linear fractional 
transformation F(G,K)(Doyle, 1989). 
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We introduce the following Hamiltonian matrices: 
















 TT

TT

ACC

BBBBA
H

11

2211
2

          (7) 

















ABB

CCCCA
J

T

TTT

11

2211
2

          (8) 

If (A,B1) and (A,B2) is stabilisable, (C1,A) and (C2,A) is 

detectable, 121 DCT and TDB 211 equals 0 while IDDT 1212 , 

IDD T 2121 exists and internally stabilizing controller if and 

only if: 
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The controller can be calculated using (Sanchez-Pena, 1998): 
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Fig. 8. General Robust feedback control system. 

Were: 

x- state vector, v- input vector, u- control input vector 

y- measurement vector, z- output vector 

4. ROBUST CONTROL OF AN INDUCTION HEATING          
INVERTER 

The first step in the design procedure of the H∞ controller is 
the creation of the plant model with uncertainties of the 
voltage source frequency controlled induction heating 
inverter.  

To obtain the state space model of the inverter, the resonant 
circuit was analyzes using Fourier transform (Tomse, 2004). 
The following state space equations resulted: 
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We linearized the system around a working point and 
obtained the following model of the resonant load frequency 
controlled inverter: 
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Fig. 9. Linearized system model 

The blocks containing R were changed with uncertainties: 

 

Fig. 10. Introduction of uncertainties 

For this particular application the following plant model with 
uncertainties resulted: 
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With the following uncertainty block: 
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To design the controller which ensures good tracking and 
limits the control signals energy we have to solve the mixed 
sensitivity problem, also called S over KS design. With other 
words we have to find the controller K which minimizes the 
sensitivity and the K sensitivity (Gu, 2005). 
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To point out the significance of the performance 
requirements over specific frequency ranges weighting 
functions had been added, which altered controller design 
requirements as follows: 
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In this case two weighting functions had been introduced: Wp 
and Wu. 

Wp ensures good disturbance attenuation and has the 
following form: 
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The form of Wp was selected so that the singular values of 
1/Wp to be above of the singular values of the sensitivity 
function (I+GK)-1 over all frequency ranges(Zhou, 2008). 

 

Fig. 11. Singular values of sensitivity and 1/Wp. 

The weight function Wu was selected to be a scalar of 0.02. 

The closed loop system with weighting functions and 
uncertainties for which the controller K has to be designed 
has the following form: 

 

Fig. 12. Closed loop system. 

To compute the controller K, the transfer function matrix 
from disturbance to error had to be extracted: 
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By minimizing the H∞ norm of the system: 
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The following controller resulted: 
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  5.  PID CONTROLLER FOR THE HEATING INVERTER 

The controller for the frequency controlled induction heating 
inverter was designed using root locus method (Zarnescu, 
1999) (Dobra, 2007). To apply the method we determine the 
transfer function model from the nominal system state space 
representation, using the (27) formula (Cirtoaje, 2009).  
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We reduce the order by neglecting the insignificant terms, 
after we divide all of them by 1810804.2  . The plant model 
obtained is (29). The model is stable, and of minimum phase 
as shown in figure 13, were we represented the step response 
for the transfer function model and the simplified transfer 
function. 
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Fig. 13. Step response for high order and reduced system. 

The closed loop behaviour is given according with the 
specification of some performance indices required for the 
step response. The imposed form for the closed loop transfer 
function is: 
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The performance requirements for the closed loop system 
are: 
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The damping ratio can be determined from the specified 
maximum overshoot * . 
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From the specified maximum settling time the natural 
frequency is being calculated. 
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Using formulas (31) and (32) we obtain: 
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The above values are replaced in equation (30), and we 
obtain the closed loop transfer function as follows. 
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To calculate the controller we use the following formula. 
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We reduce the controller order by neglecting the smaller 
coefficient after dividing the transfer function with 
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In the end we obtain the classic PI controller (37). 
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                      6.  SIMULATION RESULTS 

Simulations were made in Matlab for nominal plant and the 
plant obtained with the resistor variation of ±45%. 

The plant nominal values are: R=0.4575 Ω, L=32.6 μH and 
C=3.6 μF. 

Plant responses for a 6V step are presented in figure 14.                  

    

Fig. 14. Step response. 

As it can be observe in the figure above the PI controlled 
inverter has a 58% maximum overshoot and the worst 
settling time is 2 msec. The robust controlled inverter has a 
better behaviour with a maximum overshoot of 30% and a 
settling time of 1.3 msec. 

 

 

Plant behaviour for a 2V step disturbance is presented in 
figure 15. 

        

Fig. 15. Disturbance attenuation. 

The PI controller rejects the 2V step disturbance in maximum 
2 msec while the robust controller rejects the same 
disturbance in maximum 1.3 msec. 

                                7. CONCLUSIONS 

Looking at figure 14 and figure 15 it can be observed that the 
robust controlled inverter has better performances than the 
closed loop using classic PI controller obtained with the root 
locus method. Analyzing the worst scenario with both 
controllers the robust controlled system has lower overshoot 
(30%) and faster settling time (1.3 msec). Disturbance 
attenuation is faster for the robust controller (1.3 msec) than 
with classic controller (2 msec).  

The practical implementation difficulty for the robust 
controller is the high amount of calculus that has to be solved 
in each switching period. For the studied inverter the 
switching period is about 66 μsec. In our days the DSP 
technology allows us to perform calculus at megahertz 
frequency, making the practical implementation possible. 

To research the practical implementation and inverter 
performance the PIC32MX360F512L 32 bit microcontroller 
will be used from Microchip in form of PIC32 starter kit.  
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