
CEAI, Vol.13, No.1, pp. 54-61, 2011 Printed in Romania

Survey, Approach and Examples of Modeling
Variants in Industrial Automation

C. R. Maga* and N. Jazdi**

Institute of Industrial Automation and Software Engineering (IAS), University of Stuttgart,

Pfaffenwaldring 47, 70569 Stuttgart e-mail:{*Camelia.Maga; **Nasser.Jazdi}@ias.uni-stuttgart.de

Abstract: In order to meet requirements of different stakeholders, product lines for industrial automation
systems have a high degree of variability. Despite the remarkable effort made by researchers and
practitioners, modeling variants remains a challenge. It is often difficult to decide what does vary, how it
varies and which interdependencies have to be considered between variants of an industrial automation
system. This paper discusses the state of the art in modeling variants and proposes a new approach based
on SysML for modeling variants of an industrial automation system within a product line.

Keywords: variability, product line engineering, SysML, modeling approaches

1. INTRODUCTION

An industrial automation system encompasses a technical
system with the contained technical process, a computer and
communication system, and the process operators involved.
Thereby a technical system can be a technical product or a
technical plant, in which a technical process takes place
[Göhner 2009]. Examples of industrial automation systems
are cars, elevators, or oil refineries.

For industrial automation systems, engineering is rarely per-
formed from scratch. In most cases, there is a legacy
principle within the domain, intended to systemize and
increase the reusability of industrial automation systems. In
consequence, one develops product lines instead of single
products [Maga, Jazdi et al. 2009].

A product line is “a set of systems sharing a common, man-
aged suite of features that satisfy a particular market segment
or mission’s needs and that are developed from a common set
of core assets in a prescribed way” [Clemens, Northrop
2002]. A typical example of a product line for elevators
includes freight elevators for aircraft-carriers or car elevators,
as pictured in the Fig.1.

Fig. 1. Elevator variants [ThyssenKrupp 2010].

Industrial automation systems within a product line share
commonalities, but possess at the same time some

differences. In other words, variants occur within the product
line. A variant is an alternative solution, which is created by
varying qualitative or quantitative parameters and which
serves solving the same or approximately the same problem
as the initial solution [Franke, Firchau 1998]. Variability is
the property of a system to have variants. For industrial
automation systems, different types of variants can be
identified. [Baumgart 2005] distinguishes between structural,
functional, realization and service variants.

 Structural variants of industrial automation
systems differ from each other regarding their
structures. Examples are two elevators, one with
hydraulic drive and the other with electric drive.
Both elevators serve to transport passengers
between different floors in a building. Despite
this, they have different drives, different
components and a different placement of the
components within their structures.

 Functional variants of industrial automation
systems provide different functionalities within
the product line. For example, let us consider two
elevators: one with implemented firefighter
functionality, the other one without this
functionality. Although the two elevators have the
same structure, they exhibit different functions, in
accordance with the country’s legitimate
regulations.

 Realization variants are industrial automation
systems having different implementations.
Examples are two elevators having DC door
motors from Schindler and from Montgomery.
Although both DC motors serve in the same
function (doors movement), they may have
different speeds or heat development profiles.
Hence, the two elevators vary regarding their
realizations.

CONTROL ENGINEERING AND APPLIED INFORMATICS 55

 Service variants are industrial automation
systems with different services provided. To
illustrate, consider two elevators, one of them is
delivered together with 24 h/day surveillance and
service contract, the other has only a service
contract. Although the two elevators are similar,
their usage is different. Hence, two service
variants are necessary.

The examples listed above emphasize two aspects. First,
there are different types of variants to manage within a
product line. In the praxis, an industrial automation system
within a product line can belong simultaneously to two or
more categories of variants, being for example structural and
service variant at the same time. Second, the number of
variants within a product line can grow tremendously, when
all possible combinations are considered. Consequently,
models of variants in a product line become increasingly
difficult to understand and to use.

The current paper discusses the issue of modeling variants of
industrial automation systems within a product line. The
paper is organized as follows: the second section presents the
state of the art in modeling variants of industrial automation
systems. In the third section, we propose and illustrate a new
approach for modeling variants with SysML, including
required notations and stereotypes. Based on this, a
configuration tool has been realized, which is presented in the
fourth section. Section five concludes with a summary.

2. STATE OF THE ART IN MODELING VARIANTS

Motivated by the increasing diversity of industrial
automation systems during the last years, researchers and
practitioners have been dealing with modeling variants with
high interest [Pohl, Böckle, van der Linden 2005],
[Czarnecki, Eisenecker 2000], [Kaeding 2009]. Decision
tables, decision trees, feature diagrams and orthogonal
variability models are the most commonly used techniques
for modeling variants. Therefore, they are discussed in this
section.

2.1 Decision Tables

Explanations

Decision tables are a simple possibility to capture
information about variability of a product line. According to
[Kaeding 2009], each raw of the table represents a source of
variability. In order to create a new industrial automation
system, a decision for each raw is necessary. A sample
decision table is depicted in the following table.

Table 1. Example of a decision table for elevators

ID Description Subject Constraints Resolution Effect
material
cabin

Which
material is
used for
the
elevator’s
cabin?

cabin Panorama
elevator
recommends
glass

a) metal
b) glass

a) test cases
10 and 15
b) test cases
13, 24 and 14

The ID is a unique identifier of the variability point. The
description is formulated as a question that has to be
answered for the considered variability point. The column
“Subject” represents the affiliation to a given item or topic.
By doing this, more variation points can belong to the same
item. Possible preconditions are listed in the column
“Constraints”. The column “Resolution” presents possible
variants that are valid for the question in the second column.
Finally, the last column contains consequences related to the
chosen variants. [Kaeding 2009]. Regarding usage and
functionality, decision tables are similar to morphological
boxes presented in [Pahl, Beitz 2006]. These contain possible
variants for developing new industrial automation systems.

Advantages and Disadvantages

A significant advantage of decision tables is their
understandability. Since decision tables capture information
about variability in textual form, it is easy for everyone to
follow which variants are covered. There are no specialized
notations or symbols required [Kaeding 2009], [Pahl, Beitz
2006]. In addition, decision tables are easy to use. There are
no specialized software tools necessary to depict them.

Information in textual form is the main strength, but also the
main weakness of decision tables. Because of the textual
form, there are no formal proofs possible. In addition,
industrial automation systems are nowadays complex and
source of numerous variants. Many variants are
interdependent. It is necessary to model different relations
between variants, like mandatory, optional, recommended or
alternative relations. These interdependencies are difficult to
model in a decision table. Moreover, decision tables become
confusing when they contain a large number of variants.

2.2 Decision Trees

Explanations

Decision trees represent an improvement of decision tables.
They make it possible to capture information about variants
graphically [Kaeding 2009]. Decisions yielding variants are
represented as nodes in the tree. Tree’s edges represent
possible variants that can be chosen for engineering new
industrial automation systems. In a decision tree, the number
of end nodes (leaves, here represented as circles) corresponds
to the total number of possible configurations within the
product line. An example of a decision tree for elevators is
shown in figure 2.

Fig. 2. Example of a decision tree for elevators.

56 CONTROL ENGINEERING AND APPLIED INFORMATICS

Advantages and Disadvantages

Similar to decision tables, decision trees are easy to
understand and to use. It is not necessary to get first
familiarized with a modeling language or with a modeling
software tool before using them. Furthermore, the graphical
form enables a clear representation of possible variants.

Unfortunately, decision trees become large and unclear in
case of numerous variants. Some decisive questions have to
occur more than once, in order to cover all possible variants.
This yields redundancies in decision trees. Because of the
textual content, it is impossible to prove contained variants of
a decision tree in a formalized way. Finally, it has been
observed that some crucial interdependencies between
variants cannot be captured in decision trees.

2.3 Feature Diagrams

Explanations

According to [Kang, Cohen et al. 1990], a feature is an end-
user visible characteristic of a system. For instance, the
firefighter functionality of an elevator or the existence of
background music in the elevator’s cabin are typical features
for elevators. It is important to distinguish between features
and variants. While features are characteristics of a system,
variants occur only when two or more industrial automation
systems have different features implemented. In our example,
this would be the situation of two elevators: one with
firefighter functionality, the other without it. The feature
“firefighter functionality” has been selected and implemented
only in the first situation. The two elevators are variants
within the same product line.

Feature diagrams provide the possibility to model both
features and relations between them within a product line.
There are specialized notations for both direct relations
between features like mandatory relations, options,
alternatives, and cross relations between features like
“recommends”, “discourages”, “conflicts” or “requires”. A
good introduction to feature diagrams is given in [Czarnecki,
Eisenecker 2000]. Figure 3 shows a feature diagram for
elevators. It can be observed that each elevator must have a
drive, either an electric or a hydraulic one. Furthermore, the
diagram considers features related to the usage form of the
building, in which the elevator is located. The building can be
either residential or non-residential. In case of non-residential
buildings, the diagram considers the possibility to engineer a
high-rise elevator, depicted as optional feature in the figure.

Advantages and Disadvantages

Advantages of using feature diagrams are the dedicated
notations and symbols. After familiarization, feature
diagrams are easy to understand and to use. In addition, the
existence of specialized tools such as pure::variants [Pure
Systems 2010] enables formalized proofs of desired
configurations. Another advantage is the possibility to
capture cross relations between features.

Fig. 3. Details of a feature diagram for elevators.

Unfortunately, feature diagrams may contain redundancies, in
order to cover the entire variability of a product line. Some
features occur more than once in a feature diagram. Hence,
the clarity of the representation is affected. This disadvantage
becomes even more intense when the modeled industrial
automation system possesses many features. Another
disadvantage has been observed during the usage of feature
diagrams. There is a separation between variants models and
realization of these variants. Systems are configured with
help of feature diagrams, but designed and realized
separately, using other tools, models and notations. Under
these conditions, it is hard to determine, which impact is
associated with the selection of a feature for decisions related
to requirements, design, realization or tests. A similar
observation is confirmed by [Pohl, Böckle, van der Linden
2005].

2.4 The Orthogonal Variability Model

Explanations

Variability information is spread across different models.
One needs to model requirements, design decisions, structure,
behavior and tests of industrial automation systems. The
occurrence of a variant affects all these different models.
According to [Pohl, Böckle, van der Linden 2005], it is
almost impossible to keep the information consistent. In
order to mitigate this problem, the so-called orthogonal
variability model has been proposed. This is a “model that
defines the variability of a software product line. It relates the
variability defined to other software development models,
such as design models, component models, and test models”
[Pohl, Böckle, van der Linden 2005].

The orthogonal variability model considers variability of a
product line from requirements specification, over design and
realization, until test. It is called “orthogonal” because the
variants model is placed orthogonal to the development
models, as depicted in the following figure. In order to
encourage the usage of this approach for modeling variants,
the software tool VarMod has been developed at the Essen
University [VarMod 2010].

CONTROL ENGINEERING AND APPLIED INFORMATICS 57

Fig. 4. Details of a feature diagram for elevators.

Advantages and Disadvantages

The orthogonal variability model is a helpful approach to
model variants. It considers the effects of selecting a variant
through all the development phases of a new product within a
product line. Providing a specialized software tool increases
the acceptance for using the orthogonal variability model. In
addition, it offers an understandable way to depict and
manage variation points of a product line.

Although the orthogonal variability model is a promising
approach, it includes some disadvantages, as well. The
approach proposes two separate models: one for capturing
information about variants, along with other models for
design and development of new industrial automation
systems of a product line. This separation brings difficulties
related to consistency and evolution of the two models. For
instance, there is no complete tool chain for engineering
industrial automation systems integrated in the approach.
Usually, companies use many different tools from different
suppliers during the engineering process. Because of this,
there are some interruptions between the engineering phases
depicted horizontally in the Figure 4. Despite the clear
definition of the variation points in the variability model,
there is no guarantee that the separate models created with
different tools are consistent with it. In addition, each
evolution of the product line necessitates the maintenance of
at least two separate models. It has been observed that some
helpful cross relations between variants (e. g. “recommends”,
“discourages”, etc.) are not supported.

3. APPROACH FOR MODELING VARIANTS IN SysML

As mentioned in the previous section, existing approaches for
modeling variants have both advantages and disadvantages.
In our opinion, a new approach to model variants requires a
paradigm shift. We need models of variants within a product
line to manage existing or future commonalities and
differences. Existing approaches separate more or less
variants models from models of the product line. Our idea is
to integrate them in the product line instead of separating
them. Hence, we propose to model variants of an industrial
automation system together with its requirements, its
structure, its functionality, its realization or its service
packages. Shortcomings like inconsistency, overloaded
models, or difficulties in modeling variants using the same
concepts as for development [Pohl, Böckle, van der Linden
2005] have to be avoided. For this, we use a modeling

language to model industrial automation systems, namely
SysML [OMG 2008], and extend it with necessary
stereotypes for modeling variants.

A promising concept for modeling only software variants
exists already in form of a UML extension [Riebisch, Böllert
et al. 2000]. This concept is based on feature diagrams.
Hence, it suffers from similar disadvantages. It is confusing
for numerous variants and necessitates a separate
configuration map. This contains static design references,
which are difficult to maintain consistently. Moreover, cross
relations between variants are missing. In UML, requirement
diagrams and parameter diagrams are not supported. To
conclude, modeling variants of industrial automation systems
requires a new approach, able to cover the entire engineering
process. SysML has been chosen because it provides a
comprehensive support for modeling, covering all the
required phases.

3.1 Syntax Elements

The basic concepts for the new approach are inheritance and
package modeling. We distinguish between variability
relations between packages and within packages.

Elements of industrial automation systems that are mandatory
for each member of the product line are modeled in a core
package. This package is included through a package import
relationship provided with the stereotype “mandatory” to
each new industrial automation system. Since packages
contain different SysML diagram types, we can include in
such a core package mandatory requirements, mandatory
structures, mandatory functionalities, and mandatory test
cases. Optional elements are modeled in a separate package,
under usage of the package import relationship and the
stereotype “optional”. In this case, either the entire package is
selected or no element is included in a new industrial
automation system.

Alternatives (“xor”) and selections (“or”) are modeled with
an element import relationship provided with the “requires”
stereotype. These situations are depicted in the following
figure.

Fig. 5. Examples of possible relationships between packages.

58 CONTROL ENGINEERING AND APPLIED INFORMATICS

The usage of packages and relationships between packages
(“package import” and “element import”) brings two
advantages. First, the variants are structured hierarchically,
which increases the understandability of the model. Second,
the subordinate packages or elements are imported only if
required. This minimizes the model’s redundancy.

Variants within packages are modeled using compositions,
aggregations, and inheritance relations. If required,
cardinalities are used, as well. As depicted in figure 6,
mandatory relations are represented by shared associations
with a black diamond end. Optional elements of an industrial
automation system are modeled as shared associations with a
white diamond end. In case that a selection between two or
more elements is necessary, we introduce a superior element
encompassing commonalities of the proposed alternatives.
The differences are modeled with the help of inheritance.

Fig. 6. Possible relationships within packages.

The relations depicted in the Figure 6 are hierarchical
relations. They express relations between a system
component and its variant parts. An overview on hierarchical
relations is shown in the following table.

Table 2. Overview on hierarchical relations

(NOT a) OR (a XOR b)alternative optional

a OR b OR … OR xor

(NOT a OR a) OR (NOT b OR b)…or optional

a XOR balternative

a OR boptional

a AND bmandatory

Logical TermVariability Relation

(NOT a) OR (a XOR b)alternative optional

a OR b OR … OR xor

(NOT a OR a) OR (NOT b OR b)…or optional

a XOR balternative

a OR boptional

a AND bmandatory

Logical TermVariability Relation

 A “mandatory” relation means that the variant must
be included in the configuration of a new product

line member. For example, each elevator must have
a cabin.

 An “optional” relation refers to the selection of a
variant part, which can be done independently from
its other peers (same level system parts). The variant
part can be selected or not. An example therefore is
the situation of an elevator cabin that can be made of
laminated glass.

 “Alternative” relations mean that one and only one
of the variants marked as alternative must be chosen.
For instance, each elevator must have a drive, either
an electric or a hydraulic one.

 “Alternative optional” relations mean that either
no variant or exactly one and only one variant can
be selected. An example is an elevator that can have
a self-adapting dispatching software, either agent
based or object oriented.

 ”Or” relations mean that minimum one of the
corresponding variants in the respective product line
can be selected for the configuration. For instance,
each elevator must have an overspeed governor. In
order to execute the speed surveillance, the
overspeed governor must evaluate the signals
coming from velocity sensors, from acceleration
sensors or it uses both.

 “Or optional” relations express the possibility to
combine diverse variant components to a new
industrial automation system within the product line.
It is not mandatory to choose a variant. For example,
an elevator can cover floors with restricted access.
In order to authenticate passengers to access such
floors, an identification detection mechanism is
required a device to check the passenger’s identity is
required. For this purpose, the cabin can have a
keypad for entering the password, a fingerprint
scanner or both.

Cross relations are modeled with SysML usage relationships
that are extended accordingly with the stereotypes “requires”,
“recommends”, “forbids”, “discourages”, or “influences”.
Cross relations express relations between peer variant system
parts (same level system parts). An overview on cross
relations is shown in the table 3.

Table 3. Overview on cross relations

a AND (NOT b)discourages

a ° binfluences

a XOR bforbids

a OR (NOT a)recommends

a AND brequires

Logical TermVariability Relation

a AND (NOT b)discourages

a ° binfluences

a XOR bforbids

a OR (NOT a)recommends

a AND brequires

Logical TermVariability Relation

 Variants connected though “requires” imply that
at least one of the specified target variants has to

CONTROL ENGINEERING AND APPLIED INFORMATICS 59

be selected once the source variant is selected. For
instance, the selection of the fingerprint
authentication functionality requires the inclusion
of a fingerprint sensor in the cabin console.

 The “recommends” relation is weaker then
“requires”. One is advised to include a variant,
but neglecting this advice does not lead to a
failure in system. For example, to make the cabin
look larger, it is recommended to include a mirror
in small passenger elevators. Neglecting this
advice will still yield to a valid elevator.

 The “forbids” relation is the opposite of
“recommends.” If all specified target variants are
selected, the source variant cannot be a member
of the selection. For example, it is forbidden for
elevators with a glass cabin to be used as
firefighter’s elevators.

 The “discourages” relation is weaker then
“forbids”. One is advised not to include a variant
if the source variant is selected, but neglecting
this advice is not result to invalidity.

 The “influences” relation means that the target
variant is influenced by the source variant
according to certain parameters. The
interpretation is up to the user.

The described syntax elements allow to model variants of an
entire product line. For visualizing one variant of the product
line, SysML offers the possibility to define views. By
selecting a view, only elements related to the considered
variant will be displayed.

3.2 Example of Modeling Variants with the new Approach

The approach mentioned above has been concretely deployed
in a case study for the domain of passenger elevators. The
goal of the case study was twofold: first, to evaluate a more
extensive approach for product line engineering, which has
been developed at the Institute of Industrial Automation and
Software Engineering (IAS) of the University of Stuttgart in
cooperation with the Siemens Company. We focused on
identifying necessary refinements, changes or completions.
Detailed results have been presented in [Maga, Jazdi et al.
2009], [Maga, Jazdi 2009 a], [Maga, Jazdi 2009 b]. Second,
we aim at analyzing the deployment of the new approach for
modeling variants of industrial automation systems for a
concrete example.

In order to accomplish the case study, we proceeded as
follows. First, we identified elevator variants by analyzing a
large number of different elevators manufactured by the
companies Kone, ThyssenKrupp Elevators, Otis and
Schindler. These companies span a very broad field of
products, from freight elevators over passenger elevators to

escalators. For the sake of simplicity, the case study focused
on passenger elevators spectrum.

In a second step, we modelled a product line for passenger
elevators in SysML. For this purpose, we used the
EmbeddedPlus SysML Toolkit v2.0 in combination with the
IBM Rational Software Modeler v7.0. The SysML model
contains a large set of reusable artifacts: from reusable
requirements, over reusable state machines, reusable activity
diagrams, and reusable test cases to reusable reference
architectures. For all these reusable items, we identified
different types of variants, as presented in the first section of
this paper. Structural variants were defined in the reference
architecture of the elevator. Functional variants were
captured in reusable requirements, reusable state machines
and reusable activity diagrams. Moreover, realization variants
were considered in the reference architecture and in reusable
test cases. Finally, service variants were modelled with the
help of reusable requirements and reusable test cases.

The different types of variants were grouped to packages. An
overview of the modeled packages with variants is shown in
the following figure. This uses the notations introduced in the
previous section.

Fig. 7. Overview of packages with variants for an elevator
product line.

Mandatory elements are imported to the core package from
the different packages containing variants. If no optional
elements have been selected, a closer look to the core
package for elevators reveals the elements depicted in figure
8.

Selection and visualization of one variant is possible with the
help of SysML-views. The following figure shows the
situation of selecting the fingerprint authentication method

60 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 8. Mandatory elements within the core package for
elevators.

Fig. 9. Selection and visualization of one variant.

Please note that the presence of a fingerprint scanner is
optional in the elevator’s console architecture. When the
variant “Fingerprint” is selected from the authentication
package, then the fingerprint scanner becomes mandatory.
This variant is displayed in the view with the same name.

4. ELEVATOR CONFIGURATION TOOLS

There are many tools available on the market for modeling
variants. Widely-used in the industry and in the academia are
CaptainFeature [BigLever 2010], Pure::Variants [Pure
Systems 2010], Feature Plugin [Antkiewicz, Czarnecki
2004], XFeature [XFeature 2010] and VarMod [VarMod
2010]. A good overview on their features is given in [Djebbi
et al, 2007]. Although technically very competitive, these
tools are based on the separation of variability models and
models of elevator’s structure and behavior. In contrast, the
approach presented in the previous section captures
information about structure, behavior and variability of
industrial automation systems in only one SysML model.
This enables holistic modeling of the product line members.

Beyond modeling variants, the selection of one variant that
matches the given project requirements deserves special
attention. Particularly, in case of product lines with multiple
variation possibilities it is difficult to decide which variants
are appropriate. In order to mitigate this problem, the
approach presented in the previous sections has been used at
IAS for developing a configuration tool.

Elevator configuration tools are currently offered by many
elevator providers. Free available tools are Kone
MonoSpace® Toolbox [Kone 2010 a], Kone PlanulatorTM
[Kone 2010 b], Otis Gen2 [Otis 2010], and Elevator Designer
[Synthesis 2010]. Although these tools are useful and trivial
to use, the configuration possibilities are limited. For
instance, it is impossible to change the position of the
machine room of a proposed elevator. Furthermore, the
opening way of the elevator doors cannot be freely
configured. Moreover, since the configuration tools are
commercially motivated, only the variants available at the
concerned providers are proposed. Hence, the decision to
implement an own elevator configuration tool has been taken.

The configuration tool enables qualified recommendations of
elevator variants to meet concrete project requirements.
These requirements are regarded as input parameters.
Examples of input parameters in the freight and passenger
elevator domain are building type, number of passengers in
the building, number of floors to be covered by the elevator
and floor height. Depending on the input parameters and the
valid norms and directives in the domain, the best matching
variant is proposed. Moreover, the structure related to the
variant is displayed, so that CAD-drawings can be generated.
Same applies to behavioral models of the selected variant,
which are used for generating simulations. A screenshot of
the IAS elevator configuration tool is presented in figure 10.

input parameters

recommended
configuration

generation of CAD-drawings
and behavior simulations

Fig. 10. Functionality of the IAS elevator configuration tool.

The decision for a member of the product line is taken
according to the recommendations and best practices

CONTROL ENGINEERING AND APPLIED INFORMATICS 61

described in [Schindler 2010]. By using the IAS elevator
configuration tool it is possible to select the appropriate
variant for different project specific requirements.

5. CONCLUSION

Product lines for industrial automation systems have a high
degree of variability, in order to meet the requirements of the
different stakeholders. This contribution addressed the issue
of modeling variants of industrial automation systems. After
an introduction in the used terminology, a state of the art
survey in modeling variants was presented. Furthermore, a
new approach for modeling variants in SysML was proposed
and exemplarily deployed.

The new approach uses predefined extension mechanisms of
SysML. Hence, it is automatically supported by software
tools conform to the SysML specification [OMG 2008].
Furthermore, variants, structure and behavior of industrial
automation systems are integrated in one model. This has
positive effects on consistency, since only one model has to
be maintained. Different diagram types are modeled within
packages, so that the model remains understandable even by
numerous variants. SysML modeling skills are sufficient for
modeling both industrial automation systems and their
variants. Finally, a configuration tool for selecting
appropriate variants was proposed. Currently, a patent for the
proposed approach of modeling variants with SysML is
pending.

REFERENCES

BigLever Software Inc., http://www.biglever.com, July 2010.

C. Maga, N. Jazdi.: Concept of a Domain Repository for
Industrial Automation. Domain Engineering Workshop
at the 21st International Conference on Advanced
Information Systems (DE@CAiSE’09), Amsterdam, the
Netherlands, 2009.

C. Maga; N. Jazdi: A Survey on Determining Factors for
Modeling Reference Architectures. Proceedings of
OOPSLA, Orlando, Florida, USA, 2009.

C. Maga; N. Jazdi; T. Ehben; T. Tetzner: Domain
Engineering – Improved Systematisation in Industrial
Solutions Business. Proceedings of the Automation
Congress, Baden-Baden, Germany, 2009.

G. Kaeding: Product Lines in the Automotive Domain
(Produktlinien im Automobilbereich). Seminary
Automotive Concepts and Techniques, Sommer Term
2009, University Koblenz-Landau, 2009.

G. Pahl, W. Beitz: Design Basics (Konstruktionslehre
Grundlagen). 7.Aufl., Springer-Verlag, 2006.

H.-J. Franke, N. Firchau: Zusammenfassender
Zwischenbericht des Kalenderjahres 1998 für das
BMBF-Verbundprojekt „Methoden und Werkzeuge zur
Kostenreduktion variantenreicher Produktspektren in
der Einzeln- und Kleinserienfertigung - EVAPRO“. TU
Braunschweig, 1998.

I. Baumgart: Modularisation of Products in Plant
Engineering (Modularisierung von Produkten im
Anlagenbau). 1. Auflage, Mainz GmbH Verlag, 2005.

K. Czarnecki, U. Eisenecker: Generative Programming,
Boston, San Francisco, New York: Addison-Wesley
Verlag, 2000.

K. Kang, S. Cohen, J.A. Hess, W.E. Novak, S.A. Peterson:
Feature Oriented Domain Analysis (FODA) Feasability
Study. Technical Report, Software Engineering Institute
(SEI), Carnegie-Mellon University, 1990.

K. Pohl; G. Böckle; F. Van der Linden: Software Product
Line Engineering: Foundations, Principles and
Techniques. Springer Verlag, 2005.

Kone: http://www.kone.com/countries/de_DE/tools/Pages/
 default.aspx, accessed in July 2010.

Kone: https://www.kone.com/toolbox/start.html?locale=
 de_DE#cad, accessed in July 2010.

M. Antkiewicz, K.Czarnecki: FeaturePlugin: Feature
Modeling Plug-In for Eclipse, OOPSLA, Canada, 2004.

M. Riebisch, K. Böllert, D. Streitferdt, B. Franczyk:
Extending the UML to model System Families. Integrated
Design and Process Technology (IDFT), USA, 2000.

O. Djebbi, C. Salinesi, G. Fanmuy: Industry Survey of
Product Lines Management Tools: Requirements,
Qualities and Open Issues. 15th IEEE International
Requirements Engineering Conference, 2007.

OMG SysML Specification. www.omg.org, 2008.

Otis, http://www.otisgen2.com/index.shtml, July 2010.

P. Clemens, L. Northrop: Software Product Lines: Practices
and Patterns. Addison-Wesley, Reading, Mass, 2002.

P. Göhner: Industrial Automation. Lecture Notes, Summer
Term 2009, Institute of Industrial Automation and
Software Engineering, Universität Stuttgart, 2009

pure-systems GmbH, www.pure-systems.com, accessed in
January 2010.

Schindler, Schindler Planungsnavigator e3b, http://www.
 schindler.de/deu_index/deu_ser/deu_ser_wissen/deu_ser

_wissen_nv4.htm, accessed in July 2010.

SYNTHESIS Company: Instant custom AutoCAD drawings.
http://www.synthesiscompany.com/asp/default.asp?page
=elevator, accessed in July 2010.

ThyssenKrupp Elevators: http://www.thyssenkrupp-
aufzuege.de, accessed in January 2010.

VarMod tool, University Essen, http://www.sse.uni-
essen.de/wms/en/index.php?go=256, accessed in January
2010.

XFeature Modeling Tool, http://www.pnp-software.com
 /XFeature/, accessed in July 2010.

