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Abstract: Because the process dynamics tend to become too complex to be efficiently controlled, there is 
always a need to develop innovative control technologies, in order to obtain high economic performance. 
A way to achieve this objective is to use one of the control strategies which rely on the controlled process 
model such adaptive control, model predictive control, internal model control, robust control. In order to 
use one of these control techniques, the process model has to be obtained. The purpose of this paper is to 
present a model identification method, based on Markov parameters, for a nonlinear chemical process, 
the propylene/propane binary distillation column.  

Keywords: binary distillation, process modelling, identification, Markov parameters. 



1. INTRODUCTION 

The fundamental problem in control is to find a technically 
feasible way to act on a given process (system) so that the 
process (system) adheres, as closely as possible to some 
desired behaviour. (Goodwin, et al., 2001)  

Traditionally, for chemical processes, a way to accomplish 
this requirement is using model based control strategies.  In 
order to apply one of these control strategies the model of the 
process has to be known (obtained). This model can be a 
nonlinear one, with the advantage of being more precise and 
the disadvantage of increasing the algorithm complexity and 
the computing effort, or a linear one, with the advantage of 
simplicity and the disadvantage of not being too precise.  

For this work a middle solution was chosen, which combines 
the two main advantages of linear and nonlinear models: the 
distillation column model will be a nonlinear one, but 
represented as a reunion of linear models, one linear model 
for each operating point and process channel.  

2. THE BINARY DISTILLATION COLUMN 

The distillation column (Fig. 1) has the L-B, Shinskey 
controlled structure approach (Marinoiu and Paraschiv, 1992) 
(the reflux flow is used to control the top (propylene) 
composition and the bottom product flow is used to control 
the bottom (propane) composition).  

The process (Fig. 2) has two outputs (the propylene (top) and 
propane (bottom) compositions) and four main inputs, two 
controlled variables (the reflux and bottom product flows) 
and two disturbances (the feed flow and feed composition). 

 

Fig. 1. Propylene(C3’)/propane(C3) distillation column: PC – 
pressure controller, FC – flow controller, LC – level 
controller, L – reflux flow, P - pressure, Pi – pressure 
setpoint, B – bottom product flow, HVR – reflux tank 
level, HVRi  – reflux tank level setpoint, HB – bottom 
column level, HBi – bottom column level setpoint, F – 
feed flow, xF – feed composition, xB – bottom 
composition, xD – top composition. 

 

Fig. 2. Distillation process block diagram. 
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Using data from an industrial column the process was 
simulated using HYSYS® simulation environment, observing 
that it has a nonlinear behaviour, characterized by different 
gains and transient times for each operating point and each 
process channel (Fig. 3 and 4). 

 

Fig. 3. The top composition xD trend when the reflux flow L 
increases with 5%; xD increases from 0.91 mol. fr. to 
0.9339 mol. fr.. 

 

Fig. 4. The top composition xD trend when the reflux flow L 
increases with 5%; xD increases from 0.98 mol. fr. to 
0.9844 mol. fr.. 

3. MARKOV PARAMETERS IDENTIFICATION 
METHOD - THEORETICAL ISSUES 

The Markov parameters identification procedure is used to 
obtain the parametric model of a process using nonparametric 
models such Dirac pulse response. 

Let us consider a linear, discrete system ),,,( DCBA , 

characterized by the input-state-output (I-S-O) model: 
(Cîrtoaje, 2004)                                                        
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in which kx is the state variable vector (n dimensional); ku  - 

the input variable vector (m dimensional); ky  - the output 

variable vector (p dimensional); A - matrix having nxn size; 
B - matrix having nxm size; C - matrix having pxn size; D - 
matrix having pxm size.  

This system is characterized by the observability matrix, On  

(Ryoung, et al., 1998) 
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the controllability matrix, Rn   
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and the Hankel matrix, Hr 
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Using the notation kg  for ,1BCAk  ,1k  the matrix Hr 

becomes  
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In which kg  is the system weight function (the system 

response to a Dirac pulse), for .1k  (Julius, 2007) 

The expressions ,1BCAk 1k  are named Markov 
parameters. 

Using (5), if the system order n and the functions kg  are 

experimentally known, the Hankel matrix can be obtained 
without knowing the model parameters A, B, C and D, like in 
(4). 
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Further, the Hankel matrix decomposition, using single 
values decomposition procedure, (Hajdasinski and Damen, 
1979) can be written: 

,tr USVH   (6) 

in which S is a diagonal matrix having same order with 
matrix Hr, with the diagonal elements nonnegative, (which 
are also singular values) in crescent order; U – is a matrix 

having the singular vectors of the matrix t
rr HH  , as 

columns; Vt – is a matrix having the singular vectors of the 

matrix r
t
r HH  , as lines. 

Using the matrices U, S and V, obtained from (6), the 
controllability and observability matrices, Rn and On, are: 
(www, 2008) 

,tn VSR  .SUOn   (7) 

Further, from (7) the system’s matrices A, B, C and D can be 
computed, using (2) and (3), obtaining the system model 
having the I-S-O form (1). 

4. MARKOV PARAMETERS IDENTIFICATION 
METHOD - PRACTICAL ISSUES 

Using the Markov parameters identification procedure (Fig. 
5), models of the process can be determined for every process 
channel (Fig. 2). From the control operation point of view, 
these models have to be simpler, but robust. (Mikles and 
Fikar, 2000) A way to express the model of a process is by a 
second order transfer function with dead time: 
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where km is the process gain, τ  is the dead time and 
2

T and 

T1 are time constants. 

The Markov parameters identification method uses as input 
an experimental data set, represented as a system response to 
a Dirac pulse input, and as output data, the I-S-O (input-state-
output) model (1). 

 

Fig. 5. The identification method block diagram. 

Because the available experimental data, obtained from 
process simulations using HYSYS, are represented by the 
response h in time t of the process to a step change in input 
(as in Fig. 3 and 4), in order to apply the identification 

method these set of data have to be converted to a pulse 
response g – step1 of the identification procedure. (Fig. 6) 

Because the result of the identification procedure is the model 
in I-S-O form, using a conversion method this is converted 
into an input-output (I-O) model (transfer function) – step 3 
of the identification procedure. (Fig. 6) Further, this I-O 
model (8) can be used in a process control stage. 

 

 

Fig. 6. The identification method steps: t – time, g – system 
pulse response, h – system step response, Hn – Hankel 
matrix, (5), On – observability matrix, (2), Rn – 
controllability matrix, (3), A, B, C, D – the parameters of 
the I-S-O model, equation (1), km, T2 and T1 – the 
parameters of the I-O model, equation (8). 

5.  MODELING THE BINARY DISTILLATION COLUMN  

From the dynamic simulation results (Fig.3, 4) it can be 
observed that the process has a nonlinear behavior, with the 
operating point.  

Because the goal of this paper is to obtain a simplified 
process model, which can be further used in a control 
application, the main idea is that this model has to be a 
nonlinear one but represented as a reunion of linear models, 
one for each process channel and operating point.  

The model was chosen to be a second order transfer function, 
(8), so that the requirements regarding the model precision 
and the computing effort to be optimum. In the first order 
model case we have deviations of the model response from 
the real process response, and in the third order model case 
the computing effort increases without significant precision 
changes.  

Using the presented identification procedure, models of the 
process were obtained for different process channels and 
different operating points.  

For L-xD process channel (Fig. 2) the values of the model 
parameters km, T2 and T1 are presented, for different 
operating points, in table 1. These values were obtained using 
the experimental data recorded from HYSYS process 
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simulations, for different operating points (eg. xd=0.8, 0.85, 
0.88 etc. mol. fr.) and applying the Markov identification 
procedure as in Fig.6. 

Using the values for the obtained parameters, a function 
between these parameters and the operating point was 
obtained, for each process channel. It has the form (Băieşu, 
2008) 

n,ncompositiommetermodel_para   (9) 

in which model_parameter represents one of the km, T2 or T1 

model parameters; composition is the xD or (1-xB) 
composition; m, n are the linear dependence parameters. 

Table 1. Model parameters values for L –xD process channel, 
with the operating point. 

xD[mol. fr.] km[mol. fr./%] T2[sec2] T1[sec]
0.8 0.0109 2465 1835 

0.85 0.0085 2204 1683 
0.88 0.0065 2080 1621 
0.9 0.0058 2003 1587 

0.92 0.0042 1887 1522 
0.93 0.0036 1839 1487 
0.95 0.003 1723 1423 
0.98 0.0009 1598 1353 

Because the dependence between the operating points and 
one of the three model parameters (km, T2 or T1) is 
approximately linear (table 1), for each channel, the values of 
m and n were found by linear regression. The results are 
presented in table 2, for L-xD and B-(1-xB) process channels.                                                                                                                           

Table 2. M and n values, for  L-xD and B-(1-xB) channels. 

 L-xD 

km 
m -0.0557 
n 0.0556 

 
T2 

m -4814 
n 6313 

T1 
m -2654 
n 3956 

 B-(1-xB) 

km 
m -0.0275 
n 0.0149 

 
T2 

m 1192·102 
n -86216 

T1 
m 47750 
n -34525 

Further, using (9), the model parameters km, T2 and T1 can 
be found also for any xD or (1-xB) values.  

Accordingly, the process model will be adapted at each input 
variable change, depending of the operating point by 
computing the model parameters.  

6.  MODEL VALIDATION 

A mathematical model is considered valid if it reflects, with 
an imposed precision, the real process behavior.  

The model validation stage consisted in estimated data 
validation, by computing the error (10) between the real data 
and the estimated data, using the obtained model.  

The error is computed using the equation 

),()()( exp iyiyie estimerim    (10) 

in which i is the current time instant, erimyexp  is the 

experimental output value, and estimy  is the model estimated 

output value.  

Figures 7 and 8 present the trends of the computed error (10) 
for different process channels and different operating points, 
to an input variables change.  

 

Fig. 7. The error variation [mol. fr.] in time [min] for the 
operating point xD=0.95 mol. fr., when the reflux flow 
increases with 5%. (L - xD channel) 

 

Fig. 8. The error variation [mol. fr.] in time [min] for the 
operating point 1-xB=0.83 fr. mol., when the bottom 
product flow increases with 5%. (B – (1-xB) channel) 

The maximum error values, computed for each process 
channel, are presented in table 3. 

Table 3. The maximum error values. 

Channel L - xD F - xD xF - xD 

|e_max|[mol.fr.] 3.2·10-3 2.25·10-3 2.1·10-3 

Channel B – (1-xB) F – (1-xB) xF – (1-xB) 

|e_max|[mol.fr.] 2.5·10-3 1.8·10-4 1.7·10-4 
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As it can be observed, from table 3, the obtained process 
model is adequate for its purpose, to be used in some model 
based control algorithms, because the modeling errors are 
insignificant. This conclusion is also sustained by the 
resolution of the devices which generates the experimental 
data or by the resolution of the numerical/analogical 
conversions and by the trends from figures 9 and 10.  

 

Fig. 9. The real process response and the process model 
response, to a step input change, for the operating point 
xD=0.95 mol. fr., when the reflux flow increases with 5%. 

 

Fig. 10. The real process response and the process model 
response, to a step input change, for the operating point 1-
xB=0.83 mol. fr., when the bottom product flow increases 
with 5%.  

The trends from Fig. 9 and 10 present the real process 
response and the process model response, for L-xD and B-(1-
xB) process channels, to a step change of the input variables L 
and B, respectively. As it can be observed from the two 
trends, the process model response is approximately the same 
as the real process response.  

Taking into account the results from the model validation 
step, the conclusion is that the model is a valid one, and can 
be used in further control applications. 

 

7. CONCLUSIONS 

This paper presents a method for modeling a nonlinear binary 
distillation column using Markov parameters identification 
technique.  

The process is a multivariable one, with two outputs (the 
propylene and propane compositions) and four main inputs, 
two controlled variables (the reflux and bottom product 
flows) and two disturbances (the feed flow and feed 
composition). 

The main idea and contribution of this paper was to obtain a 
set of local transfer-function models, using available 
input/output data and the Markov parameters identification 
procedure, to represent the dynamic system for different 
operating points and process channels, and then to connect 
the set of local models to form a global dynamic model.  

The obtained process model is a nonlinear one, but 
represented as a reunion of linear models, described by 
second order transfer functions with dead time. 

The model was validated and can be used in further control 
applications. 
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