
CEAI, Vol.13, No.1, pp. 43-48, 2011 Printed in Romania

Synchronizing Robot Motions in Cooperative Tasks

Anton Florin*, Anton Silvia*

*Automation and Applied Informatics Department, University Politehnica of Bucharest, RO 060032
Bucharest, Romania (Tel: 021-421-9314; e-mail: anton@cimr.pub.ro).

Abstract: This paper discusses the problem of synchronizing multiple robots in cooperative tasks. The
problem is divided in two parts: first the problem of synchronizing robots which are handling large
objects that cannot be manipulated only by one robot (hard connected robots) is discussed; the problem is
approached from the point of view of path planning, kinematics, and movement synchronization. An
alternative of control using the force control and dynamics which solved by using a decentralized control
structure is also presented. The second problem concerns robot synchronization in a shared workspace;
here is presented a method of control for collision avoidance and time optimization for the robot tasks
(assembly / disassembly). In the conclusion section the results from the experiments conducted on two
SCARA type robots (Adept Cobra s600) are presented.

Keywords: Motion Synchronization, Robot control, Cooperative robots, I/O and Ethernet
Communication.



1. INTRODUCTION

Recent research activities have been directed toward
designing multiple robot systems engaged in collective
behaviour. Such systems are of interest for several reasons:

 tasks may be inherently too complex for a single robot to
be accomplished (or impossible to be realized), or
performance benefits can be gained from using multiple
robots;

 building and using several simple robots can be easier,
cheaper, more flexible and more fault tolerant than having
a single powerful robot for each separate task.

Studies concerning multiple-robot systems naturally extend
research on single-robot systems, but represent also a
discipline itself: multiple-robot systems can accomplish tasks
that no single robot can accomplish, since ultimately a single
robot, no matter how capable, is spatially limited, Caccavale
and Uchiyama (2008).

Modelling and controlling multiple robotic manipulators
handling a constrained object requires more sophisticated
techniques compared with a single robot working alone.
Since the theory employed for cooperative robots is
independent of their size, one can think of them as
mechanical hands.

Robot hands (as well as cooperative robots), may find many
areas of application nowadays. Many benefits can be
obtained by using them in industrial manufacturing. A typical
example is in a flexible assembly, where the robots assemble
two parts into a product, Guidino-Lau and Arteaga (2006).

Robots working in a cooperative manner can also be used in
material handling, e.g., transporting objects beyond the load
carrying capacity of a single robot. Furthermore, their

employment allows improving the quality of tasks in the
manufacturing industry requiring high precision.

From another point of view, cooperative robots are
indispensable for skilful grasping and dexterous manipulation
of objects. However, the literature about experimental results
on the modelling, simulation and control of systems of
multiple manipulators holding a common object is rather
sparse.

Fig. 1. Robot cooperative task.

Our research is based on two SCARA type Adept Cobra s600
robots (Fig. 1). The robots are used in tasks of cooperative
movement (object handling) and in tasks where the robots
share a common workspace. The paper gives a solution for
movement synchronization based on Ethernet and I/O
communication as an alternative to force control techniques,
Anton (2008).

2. VIRTUAL LINKAGE

The task of manipulating objects requires accurate control of
internal forces. Williams and Khatib (1993) proposed the
virtual linkage, as a model of internal forces associated with
multi-grasp manipulation. In this model, grasp points are
connected by a closed, non-intersecting set of virtual links.

44 CONTROL ENGINEERING AND APPLIED INFORMATICS

The same approach was used in this paper, but in our case the
robots are in a client-server relationship (Fig. 2). Based on
the spatial position and orientation of the robots, and using
the kinematic models of the robots, the server robot
computes the trajectory for both robots and the client only
execute the moves in a synchronized manner. In this
approach, the robots can be controlled without force sensors
because the movements are composed by small segments of
linear movements synchronized using the I/O lines.

Fig. 2. The virtual linkage.

The position and orientation of the client robot base (relative
to the base coordinate system of the server robot)

(''' ,, ZYX and ) and the dimensions of the handled object
are well known, also the grasping positions are precisely
trained.

Using only small linear movements the two robots have three
types of cooperative movements expressed relative to the
handled object:

 translations (in this mode both robots are moving in the
same direction using the same speed and path length);

 rotations (here the robots have different directions of
movement, different speeds, and different path lengths).
The robots start the movement and are stopping it at the
same moment of time, so the duration of the movement is
the same despite the different path lengths;

 movements composed from the two above basic types.

In the first case the problem is very simple:
Having a small movement x on X axis of the server robot,
a movement of the client robot results, being composed on
the two axes:









)sin('

)cos('




xy

xx
x (1)

and a small movement y on Y axis generates:









)cos('

)sin('




yy

yx
y (2)

In the second case, the rotations can be executed around any
point between the grasping points (included in the

LO segment). Let that point be x , then the LO segment is

spitted in two segments:),(
1

xGdistl Sx  and

),(
2 Cx Gxdistl  , where SG and CG are the grasping points

of the robots relative to the object),(CSL GGdistO  . If the

object must be rotated with the amount L in counter

clockwise direction, this rotation will be generated by a
rotation

S4 and a movement
SxP ,

SyP of the server robot:















L

Lxyy

Lxxx

L

SiS

SiS

SiS

lPP

lPP







44

)cos(

)sin(

1

1

, (3)

where
SixP ,

SiYP and
Si4 is the initial position of the server

robot and the rotation of the 4th segment:

Fig. 3. Initial and final points for the segment rotation.

In the triangles),,(SiS PPx and),,(CiC PPx (Fig. 3) the

relation below holds:

C

S

C

S

x

x

y

y

x

x

l

l









2

1 , (4)

where:










SiS

SiS

yyS

xxS

PPy

PPx
 and










CiC

CiC

yyC

xxC

PPy

PPx
 (5)

From Eq. 4 and Eq. 5 it is:





















1

21

1

21

)(

)(

x

xyyyx
y

x

xxxxx
x

L

l

lPPPl
P

l

lPPPl
P

SiSCi

C

SiSCi

C

 (6)

But
CxP and

CYP are expressed in the coordinate system of the

server robot; to compute the correct coordinates we replace
Eq. 5 and Eq. 4 in Eq. 1 and Eq. 2 and then add the results:











)cos(

)sin(

2

2

''

''





Lxyy

Lxxx
L lPP

lPP

CiC

CiC (7)

The rotation of the 4th link is:

LCiC
  44 (8)

3. AN ALTERNATIVE TO DECENTRALIZED CONTROL

In the force control approach a control scheme of a
decentralized architecture has to be used, so that the input
torque for each robot is calculated in its own joint space and

3P

2P

1P

1

'
P

2
'
P

3
'
P

CONTROL ENGINEERING AND APPLIED INFORMATICS 45

takes into account motion constraints rather than the held
object dynamics.

In the case of a multiple robot system, each robot has real-
time access only to its own state information and can only
infer information about the other robots’ grasp forces through
their combined action on the object. In the decentralized
control structure, the object level specifications of the task
are transformed into individual tasks for each of the
cooperative robots. Local feedback control loops are then
developed at each grasp point.

The task transformation and the design of the local
controllers are accomplished in consistency with the
augmented object and virtual linkage models, Braun et. al.
(2004). The overall structure of the decentralized control
structure introduced by Khatib et. Al (1995) is shown in Fig.
4, where forceF and intF are the input force and the input

internal forces, if and isf , are the forces at the thi grasp point

and the sensed forces at the thi grasp point.

The above control structure will work correctly if the object
is rigid (interraction via environment) and there is no slippage
at the grasp points. Gripper slip in the real system will result
in errors in the grasp kinematic computation and
inconsistencies with the virtual linkage model.

To compensate for these effects, some level of
communication between the different platforms is needed for
updating the robot state and modifying the task
specifications. The rate at which this communication is
required is much slower than the local servo control rate.
Such communication can be achieved over a radio Ethernet
link (at 10-20 Hz).

Our method of control uses only the communication in order
to move the objects in a synchronized manner (interraction
via communication). This approach is based on knowing the
initial positions of the robots, the dimensions and the desired
final position of the handled object.

The control structure is based on the client-server
architecture. Here one robot (the server) knows all the above
initial data, also knows the kinematics of the client robot and
computes off-line the path which the client robot must
follow. The path is decomposed in small segments and the
robots synchronize the motion using high speed I/O lines.

This approach allows us to solve the following problems: it is
not required that the object be rigid (there is no force
sensing), and there is no slippage of the object because the
small segments of synchronized movements. Also because all
the computation (path planning) is executed off-line (when
the robots are not moving) and the movement control
programs are almost identical (the single difference are the
values stored in the position variables), a faulty
synchronization due to instructions execution time is
prevented.

4. SHARED WORKSPACE

In the case of multiple robots moving within a common
environment, they typically attempt to avoid collisions. This
may be viewed as a problem of resource conflict, which may
be resolved by introducing, e.g., traffic rules, priorities, or
communication architectures.

From another perspective, path planning must be performed
taking into consideration other robots and the global
environment; this multiple-robot path planning is an
intrinsically geometric problem in space-time configuration.
Prioritization and communication protocols – as well as the
internal modelling of other robots – all reflect possible
variants of the group architecture of the robots.

As an example, traffic rules are commonly used to reduce
planning cost for avoiding collision and deadlock in a real-
world environment, such as a network of roads.
For multiple robots to inhabit a shared environment,
manipulate objects in the environment, and possibly
communicate with each other, a mechanism is needed to
resolve resource conflicts.

Resource conflict arises when a single indivisible resource is
requested by multiple robots. This issue has been studied in
many works, notably the mutual exclusion problem in
distributed algorithms and the multi-access problem in
computer networks. With multiple robots, resource conflict
occurs when there is a need to share space, manipulable
objects or communication media.
Therefore the discussion is centred on the space sharing
problem, which has been studied primarily via multiple-robot
path planning and the collision and deadlock avoidance
problems.

Fig. 4. Decentralized control structure.

46 CONTROL ENGINEERING AND APPLIED INFORMATICS

Rude, (1994) considers the problem of crossing an
intersection: event transforms into the local space-time
coordinate frame of a robot are applied, and each robot (i)
iteratively updates the local frame and its objects, (ii)
evaluates collision risk, and (iii) generates a modified path
depending on the collision risk. However, researchers
considering real-world multi-robot systems typically
conclude that planning paths in advance is impossible. Thus,
robots are often restricted to prescribed paths or roads, with
rules (like real life traffic laws) and communications used to
avoid collision and deadlock, Stroupe et. al. (2005).

Grossman (1988) classifies instances of the traffic control
problem into three types: (i) restricted roads, (ii) multiple
possible roads with robots selecting autonomously between
them, and (iii) multiple possible roads with centralized traffic
control. When individual robots possess unique roads from
one point to another, no conflict is possible; when there is
global knowledge and centralized control, it is easy to
prevent conflict. Thus, the interesting case is (ii), where
robots are allowed to autonomously select roads. Restricted
roads are highly suboptimal, and that the autonomous road
choice coupled with a greedy policy for escaping blocked
situations is far more effective (i.e. "modest cooperation",
where robots are assumed to be benevolent for the common
good of the system).

In our case the robots share a common workspace for
assembly/disassembly purposes. The parts which compose
the assembly are stored in stacks in the private workspace
while the objects are assembled in the shared workspace.
Here, because the robots must access the same position in
space or very close positions at different speeds (the aim is to
assemble as many object as it is possible), there is no
possibility to plan an optimal path for the robots and then
synchronize them.

The idea is to create two movement modes:

 A free movement mode, where the robot has no
movement constraints relative to the other robot. This
regime is used in the private workspace.

 A second movement mode where the robot is tying to
access the shared workspace.

The second movement mode is achieved by using the
kinematic model of the robots and also knowing the positions
and orientation of each robot base relative to the other robot.
In this case one can compute the positions 321 ,,  PPP and

of the first three robot articulations (for SCARA robots)
where 1P and 1P are the positions of the robots base. Then

a volume is defined around each segment; the shortest
distance from the border of this volume to the link is l (see
also Fig. 2).

At run time, the robot which is accessing the shared
workspace has a privileged status until it has done the job.
The robot (R2) which wants to access the shared workspace
checks the status of the other robot (R1). If R1 is accessing
the shared workspace, then R2 computes the distances from

the second and the third articulations (32 , dPP ) to the links

1L and 2L of R1 and the distance from each point  yxP , to

each link  10 , PPL , where the points 0P and 1P are the

locations of the articulations computed using the kinematic
model (321 ,,  PPP ,and have the coordinates  000 , yxP and

 111 , yxP); this distance is given by equation (9).

       
   201

2
01

01100110,
yyxx

yxyxyxxxyy
LPd




 (9)

If the distances d are greater than l2 then the movement can
be executed, else the projection point of  yxP , on  10 , PPL

is computed, and if the projection point is included in the
segment  10 , PPL , then the movement cannot be done. If the

projection point is not included in the L segment, then the
distance between  yxP , and the closest point of the segment

( 000 , yxP or  111 , yxP) is computed. If this distance is

greater than l2 , then the movement can be executed. If the
second robot cannot execute the movement it will compute
the closest point form the destination point which is out of
the reach of the privileged robot and moves there. After that,
it monitors the activity of the privileged robot and tries again
to reach the destination. All movements are decomposed into
small movement segments; in this way the robots have more
flexibility and the risk to collide is reduced.

The same approach is used when the robot R1 (with
privileged status) is moving. In this case, if the movement
cannot be done due to collision risk, the robot R2 will be
informed and will clear the path.

This type of movement testing and synchronization can be
compared with the behaviour of magnets. The privileged
robot is not influenced by the other robot; instead the other
robot is pushed by the "magnetic force" of the privileged
robot and is "attracted" by the destination position. This
behaviour can be described by the algorithm given in Fig. 5
(SH_WS is the shared workspace).

5. COMMUNICATION

5.1 Interaction via environment

Modelling the behaviour (intentions, beliefs, actions,
capabilities, and states) of other robots can lead to more
effective cooperation between robots.
Communications requirements can also be lowered if each
robot has the capability to model the behaviour of other
cooperative robots.

Modelling of other robots entails more than implicit
communication via the environment or perception: it requires
that the modeller has some representation of another robot,
and that this representation can be used to make inferences
about the actions of the other robot.

CONTROL ENGINEERING AND APPLIED INFORMATICS 47

In applications where robots must cooperate, modelling has
been explored most extensively in the context of
manipulating a large object.

Many solutions have exploited the fact that the object can
serve as a common medium by which the robots can model
each other.

In a rigid body carrying task, each robot uses a probabilistic
model of the other agent. When a risk threshold is exceeded,
an agent communicates with its partner to maintain
coordination, Miyabe et. al. (2004).

The simplest, most limited type of interaction occurs when
the environment itself is the communication medium, and
there is no explicit communication or interaction between
robots. This modality has also been called "cooperation
without communication" by some researchers. Systems that
depend on this form of interaction have been discussed in
Gueaieb et. al. (2003).

This type of interaction is suited for robots with force sensors
which are connected in virtual links using the handled
objects. In the case of cooperative handling due to problems
presented in section 3 (gripper slip, non rigid objects) an
Ethernet link is also required.

5.2 Interaction via communications

This form of interaction involves a type of explicit
communication; in which an media access protocol is used
for inter-robot communication, Kawasaki et. al. (2006),
Martinez-Rosas et. al. (2006).

Our approach uses only I/O and Ethernet communication in
order to synchronize the robot movements. There are two
types of strategies used:

 In the case of collaborative object handling the first robot
computes offline a set of points which the second robot
will follow; here before the movement begins the robots
make a communication over Ethernet for
sending/receiving the set of points; at online stage
movements are synchronized by activating/deactivating
an I/O line to signal the movement start/stop.

 The other case when the robots use a shared workspace
assumes that I/O lines are used to signal if a robot has a
privileged status (whether it is the first which accesses the
shared workspace), and to signal the beginning and the
end of each movement, as well as the Ethernet line highly
used to transmit the current position.

Fig. 5 presents an algorithm wich allow the access to a
shared workspace for two robots without the risk of
collision. Using the kinematics, each robot is aware of the
position of the other robot in space and the risk of collision
is determined. Based on the robot priority and the
communication, the workspace is cleared in order that the
robot with the biggest priority to access the workspace.

6. CONCLUSIONS

The paper discusses two types of robot applications with
robot movement synchronization needed.

 Fig. 5. Shared workspace access algorithm.

48 CONTROL ENGINEERING AND APPLIED INFORMATICS

The first discussion case (Fig. 6) can be applied in cases
where the robots are handling an object which can be heavy
enough that a robot could not handle by itself, or the object
has a shape that is very difficult to be grasped and handled by
one robot; the robots are connected and each movement must
be synchronized.

Fig. 6. Collaborative object handling.

In this first case we managed to use two Adept Cobra s600
industrial robots to handle an object without sensing the
forces using force sensors, but by using high speed I/O lines
to synchronize robot movements. One robot which knows
how the handled object will be moved, computes the
trajectory for both robots based on the virtual linkage and the
kinematics of robots, and then each movement is
synchronized using the I/O lines.

This method is much cheaper than using force sensors, is
reliable and solves some problems which appear to
decentralized force control (here the object can be made of
any material rigid or not, the grippers can be vacuum
grippers, etc.) all that because the force sensing is not needed
anymore.

Fig. 7. Shared workspace access.

In the second case (Fig. 7) the problem was to synchronize
the movements of robots in such way that the robots will
access a shared workspace without the risk of collision using
an optimal method which simulates the behaviour in
"magnetic fields" (the low privilege robot is pushed back by
the high privilege robot but is attracted by the destination
position).

The implementation of this second case is based on high
volume of Ethernet communication. During the tests it has

been observed that due to communication delays, in some
situations where the robots access the shared workspace,
there is a small delay between consecutive movements of the
robots (despite this problem synchronization depending only
on the high speed I/O lines).

The problem can be solved using the method of interaction
via environment - in our case the controller memory. The
robots can be controlled using a single Adept Smart
Controller CX in dual configuration. This solution solves the
communication delay adding a plus of performance.

REFERENCES

Anton, S. (2008). Integrating multiple robot-vision systems in
intelligent assembly/disassembly structures. PhD thesis,
UPB Automatics and Industrial Informatics Department.

Braun, B.M., Starr, G.P., Wood, J.E. and Lumia, R. (2004). A
framework for implementing cooperative motion on
industrial controllers. IEEE Trans. Robot. Autom. 20,
583-589

Caccavale, F. and Uchiyama M. (2008). Cooperative
Manipulators. Springer Handbook of Robotics, 701-716

Grossman, D. (1988). Traffic control of multiple robot
vehicles. IEEE Journal of Robotics and Automation. 4,
491–497.

Gudiño-Lau, J. and Arteaga, M.A. (2006). Dynamic Model,
Control and Simulation of Cooperative Robots: A Case
Study, Mobile Robots, Moving Intelligence, ARS/pIV,
Germany

Gueaieb, W., Karray, F., and Al-Sharhan, S. (2003). A robust
adaptive fuzzy position/force control scheme for
cooperative manipulators. IEEE Trans. Contr. Syst.
Technol. 11, 516-528

Kawasaki, H., Ueki, S., and Ito, S. (2006). Decentralized
adaptive coordinated control of multiple robot arms
without using a force sensor. Automatica 42, 481-488

Khatib, O., Yokoi, K., Chang, K., Ruspini, D.C., Holmberg,
R., Casal, A., and Baader, A. (1995). Force Strategies for
Cooperative Tasks in Multiple Mobile Manipulation
Systems. Proc. of the International Symposium on
Robotics Research, 333-342.

Martinez-Rosas, J.C., Arteaga, M.A., and Castillo-Sanchez,
A.M. (2006). Decentralized control of cooperative robots
without velocity-force measurements. Automatica 42,
329-336

Miyabe, T., Konno, A., Uchiyama, M., and Yamano, M.
(2004). An approach toward an automated object
retrieval operation with a two-arm flexible manipulator.
Int. J. Robot. Res. 23, 275-291

Rude, M. (1994). Cooperation of mobile robots by event
transforms into local space-time. IEEE/RSJ IROS. 1501–
1507.

Stroupe, A., Huntsberger, T., Okon, A., and Aghazarian, H.
(2005). Precision Manipulation with Cooperative
Robots. Multi-Robot Systems. From Swarms to
Intelligent Automata Volume III, 235-248

Williams, D. and Khatib, O. (1993). The Virtual Linkage: A
Model for Internal Forces in Multi-Grasp Manipulation,
Proc. IEEE Int. Conf. Robotics and Automation, 1025-
1030.

