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Abstract: This paper discusses the problem of synchronizing multiple robots in cooperative tasks. The 
problem is divided in two parts: first the problem of synchronizing robots which are handling large 
objects that cannot be manipulated only by one robot (hard connected robots) is discussed; the problem is 
approached from the point of view of path planning, kinematics, and movement synchronization. An 
alternative of control using the force control and dynamics which solved by using a decentralized control 
structure is also presented. The second problem concerns robot synchronization in a shared workspace; 
here is presented a method of control for collision avoidance and time optimization for the robot tasks 
(assembly / disassembly). In the conclusion section the results from the experiments conducted on two 
SCARA type robots (Adept Cobra s600)   are presented. 

Keywords: Motion Synchronization, Robot control, Cooperative robots, I/O and Ethernet 
Communication.  



1. INTRODUCTION 

Recent research activities have been directed toward 
designing multiple robot systems engaged in collective 
behaviour. Such systems are of interest for several reasons: 

 tasks may be inherently too complex for a single robot to 
be accomplished (or impossible to be realized), or 
performance benefits can be gained from using multiple 
robots; 

 building and using several simple robots can be easier, 
cheaper, more flexible and more fault tolerant than having 
a single powerful robot for each separate task. 

Studies concerning multiple-robot systems naturally extend 
research on single-robot systems, but represent also a 
discipline itself: multiple-robot systems can accomplish tasks 
that no single robot can accomplish, since ultimately a single 
robot, no matter how capable, is spatially limited, Caccavale 
and Uchiyama (2008).  

Modelling and controlling multiple robotic manipulators 
handling a constrained object requires more sophisticated 
techniques compared with a single robot working alone. 
Since the theory employed for cooperative robots is 
independent of their size, one can think of them as 
mechanical hands. 

Robot hands (as well as cooperative robots), may find many 
areas of application nowadays. Many benefits can be 
obtained by using them in industrial manufacturing. A typical 
example is in a flexible assembly, where the robots assemble 
two parts into a product, Guidino-Lau and Arteaga (2006). 

Robots working in a cooperative manner can also be used in 
material handling, e.g., transporting objects beyond the load 
carrying capacity of a single robot. Furthermore, their 

employment allows improving the quality of tasks in the 
manufacturing industry requiring high precision.  

From another point of view, cooperative robots are 
indispensable for skilful grasping and dexterous manipulation 
of objects. However, the literature about experimental results 
on the modelling, simulation and control of systems of 
multiple manipulators holding a common object is rather 
sparse. 

 
 
 
 
 

 
 
 

Fig. 1. Robot cooperative task. 

Our research is based on two SCARA type Adept Cobra s600 
robots (Fig. 1). The robots are used in tasks of cooperative 
movement (object handling) and in tasks where the robots 
share a common workspace. The paper gives a solution for 
movement synchronization based on Ethernet and I/O 
communication as an alternative to force control techniques, 
Anton (2008). 

2. VIRTUAL LINKAGE 

The task of manipulating objects requires accurate control of 
internal forces. Williams and Khatib (1993) proposed the 
virtual linkage, as a model of internal forces associated with 
multi-grasp manipulation. In this model, grasp points are 
connected by a closed, non-intersecting set of virtual links.  
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The same approach was used in this paper, but in our case the 
robots are in a client-server relationship (Fig. 2). Based on 
the spatial position and orientation of the robots, and using 
the kinematic models of the robots, the server robot 
computes the trajectory for both robots and the client only 
execute the moves in a synchronized manner. In this 
approach, the robots can be controlled without force sensors 
because the movements are composed by small segments of 
linear movements synchronized using the I/O lines. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 2. The virtual linkage. 

The position and orientation of the client robot base (relative 
to the base coordinate system of the server robot) 

( ''' ,, ZYX and  ) and the dimensions of the handled object 
are well known, also the grasping positions are precisely 
trained. 

Using only small linear movements the two robots have three 
types of cooperative movements expressed relative to the 
handled object: 

 translations (in this mode both robots are moving in the 
same direction using the same speed and path length); 

 rotations (here the robots have different directions of 
movement, different speeds, and different path lengths). 
The robots start the movement and are stopping it at the 
same moment of time, so the duration of the movement is 
the same despite the different path lengths; 

 movements composed from the two above basic types. 

In the first case the problem is very simple: 
Having a small movement x  on X axis of the server robot, 
a movement of the client robot results, being composed on 
the two axes: 









)sin('

)cos('




xy

xx
x                   (1) 

and a small movement y  on Y axis generates: 
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In the second case, the rotations can be executed around any 
point between the grasping points (included in the 

LO segment). Let that point be x , then the LO segment is 

spitted in two segments: ),(
1
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2 Cx Gxdistl  , where SG and CG  are the grasping points 

of the robots relative to the object ),( CSL GGdistO  . If the 

object must be rotated with the amount L  in counter 

clockwise direction, this rotation will be generated by a 
rotation 

S4  and a movement
SxP , 

SyP of the server robot:  
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where
SixP ,

SiYP  and 
Si4 is the initial position of the server 

robot and the rotation of the 4th segment: 
 

 

Fig. 3. Initial and final points for the segment rotation. 

In the triangles ),,( SiS PPx and ),,( CiC PPx  (Fig. 3) the 

relation below holds:  
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From Eq. 4 and Eq. 5 it is: 
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But 
CxP and 

CYP are expressed in the coordinate system of the 

server robot; to compute the correct coordinates we replace 
Eq. 5 and Eq. 4 in Eq. 1 and Eq. 2 and then add the results: 
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The rotation of the 4th link is: 

LCiC
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3. AN ALTERNATIVE TO DECENTRALIZED CONTROL 

In the force control approach a control scheme of a 
decentralized architecture has to be used, so that the input 
torque for each robot is calculated in its own joint space and 
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takes into account motion constraints rather than the held 
object dynamics.  

In the case of a multiple robot system, each robot has real-
time access only to its own state information and can only 
infer information about the other robots’ grasp forces through 
their combined action on the object. In the decentralized 
control structure, the object level specifications of the task 
are transformed into individual tasks for each of the 
cooperative robots. Local feedback control loops are then 
developed at each grasp point.  

The task transformation and the design of the local 
controllers are accomplished in consistency with the 
augmented object and virtual linkage models, Braun et. al. 
(2004). The overall structure of the decentralized control 
structure introduced by Khatib et. Al (1995) is shown in Fig. 
4, where forceF  and intF  are the input force and the input 

internal forces, if and isf , are the forces at the thi grasp point 

and the sensed forces at the thi grasp point. 

The above control structure will work correctly if the object 
is rigid (interraction via environment) and there is no slippage 
at the grasp points. Gripper slip in the real system will result 
in errors in the grasp kinematic computation and 
inconsistencies with the virtual linkage model. 

To compensate for these effects, some level of 
communication between the different platforms is needed for 
updating the robot state and modifying the task 
specifications. The rate at which this communication is 
required is much slower than the local servo control rate. 
Such communication can be achieved over a radio Ethernet 
link (at 10-20 Hz). 

Our method of control uses only the communication in order 
to move the objects in a synchronized manner (interraction 
via communication). This approach is based on knowing the 
initial positions of the robots, the dimensions and the desired 
final position of the handled object. 

The control structure is based on the client-server 
architecture. Here one robot (the server) knows all the above 
initial data, also knows the kinematics of the client robot and 
computes off-line the path which the client robot must 
follow. The path is decomposed in small segments and the 
robots synchronize the motion using high speed I/O lines.  

This approach allows us to solve the following problems: it is 
not required that the object be rigid (there is no force 
sensing), and there is no slippage of the object because the 
small segments of synchronized movements. Also because all 
the computation (path planning) is executed off-line (when 
the robots are not moving) and the movement control 
programs are almost identical (the single difference are the 
values stored in the position variables), a faulty 
synchronization due to instructions execution time is 
prevented. 

4. SHARED WORKSPACE 

In the case of multiple robots moving within a common 
environment, they typically attempt to avoid collisions. This 
may be viewed as a problem of resource conflict, which may 
be resolved by introducing, e.g., traffic rules, priorities, or 
communication architectures. 

From another perspective, path planning must be performed 
taking into consideration other robots and the global 
environment; this multiple-robot path planning is an 
intrinsically geometric problem in space-time configuration. 
Prioritization and communication protocols – as well as the 
internal modelling of other robots – all reflect possible 
variants of the group architecture of the robots. 

As an example, traffic rules are commonly used to reduce 
planning cost for avoiding collision and deadlock in a real-
world environment, such as a network of roads.    
For multiple robots to inhabit a shared environment, 
manipulate objects in the environment, and possibly 
communicate with each other, a mechanism is needed to 
resolve resource conflicts. 

Resource conflict arises when a single indivisible resource is 
requested by multiple robots. This issue has been studied in 
many works, notably the mutual exclusion problem in 
distributed algorithms and the multi-access problem in 
computer networks. With multiple robots, resource conflict 
occurs when there is a need to share space, manipulable 
objects or communication media. 
Therefore the discussion is centred on the space sharing 
problem, which has been studied primarily via multiple-robot 
path planning and the collision and deadlock avoidance 
problems. 
 
 
 

 

Fig. 4. Decentralized control structure.
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Rude, (1994) considers the problem of crossing an 
intersection: event transforms into the local space-time 
coordinate frame of a robot are applied, and each robot (i) 
iteratively updates the local frame and its objects, (ii) 
evaluates collision risk, and (iii) generates a modified path 
depending on the collision risk. However, researchers 
considering real-world multi-robot systems typically 
conclude that planning paths in advance is impossible. Thus, 
robots are often restricted to prescribed paths or roads, with 
rules (like real life traffic laws) and communications used to 
avoid collision and deadlock, Stroupe et. al. (2005). 

Grossman (1988) classifies instances of the traffic control 
problem into three types: (i) restricted roads, (ii) multiple 
possible roads with robots selecting autonomously between 
them, and (iii) multiple possible roads with centralized traffic 
control. When individual robots possess unique roads from 
one point to another, no conflict is possible; when there is 
global knowledge and centralized control, it is easy to 
prevent conflict. Thus, the interesting case is (ii), where 
robots are allowed to autonomously select roads. Restricted 
roads are highly suboptimal, and that the autonomous road 
choice coupled with a greedy policy for escaping blocked 
situations is far more effective (i.e. "modest cooperation", 
where robots are assumed to be benevolent for the common 
good of the system). 

In our case the robots share a common workspace for 
assembly/disassembly purposes. The parts which compose 
the assembly are stored in stacks in the private workspace 
while the objects are assembled in the shared workspace. 
Here, because the robots must access the same position in 
space or very close positions at different speeds (the aim is to 
assemble as many object as it is possible), there is no 
possibility to plan an optimal path for the robots and then 
synchronize them. 

The idea is to create two movement modes: 

 A free movement mode, where the robot has no 
movement constraints relative to the other robot. This 
regime is used in the private workspace. 

 A second movement mode where the robot is tying to 
access the shared workspace. 

The second movement mode is achieved by using the 
kinematic model of the robots and also knowing the positions 
and orientation of each robot base relative to the other robot. 
In this case one can compute the positions 321 ,,  PPP  and 

of the first three robot articulations (for SCARA robots) 
where 1P  and 1P  are the positions of the robots base. Then 

a volume is defined around each segment; the shortest 
distance from the border of this volume to the link is l  (see 
also Fig. 2). 

At run time, the robot which is accessing the shared 
workspace has a privileged status until it has done the job. 
The robot (R2) which wants to access the shared workspace 
checks the status of the other robot (R1). If R1 is accessing 
the shared workspace, then R2 computes the distances from 

the second and the third articulations ( 32 , dPP  ) to the links 

1L  and 2L  of R1 and the distance from each point  yxP ,  to 

each link  10 , PPL , where the points 0P and 1P  are the 

locations of the articulations computed using the kinematic 
model ( 321 ,,  PPP ,and have the coordinates  000 , yxP and 

 111 , yxP ); this distance is given by equation (9). 
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If the distances d are greater than l2 then the movement can 
be executed, else the projection point of  yxP , on  10 , PPL  

is computed, and if the projection point is included in the 
segment  10 , PPL , then the movement cannot be done. If the 

projection point is not included in the L segment, then the 
distance between  yxP ,  and the closest point of the segment 

(  000 , yxP  or  111 , yxP ) is computed. If this distance is 

greater than l2 , then the movement can be executed. If the 
second robot cannot execute the movement it will compute 
the closest point form the destination point which is out of 
the reach of the privileged robot and moves there. After that, 
it monitors the activity of the privileged robot and tries again 
to reach the destination. All movements are decomposed into 
small movement segments; in this way the robots have more 
flexibility and the risk to collide is reduced. 

The same approach is used when the robot R1 (with 
privileged status) is moving. In this case, if the movement 
cannot be done due to collision risk, the robot R2 will be 
informed and will clear the path. 

This type of movement testing and synchronization can be 
compared with the behaviour of magnets. The privileged 
robot is not influenced by the other robot; instead the other 
robot is pushed by the "magnetic force" of the privileged 
robot and is "attracted" by the destination position. This 
behaviour can be described by the algorithm given in Fig. 5 
(SH_WS is the shared workspace). 

5.  COMMUNICATION 

5.1 Interaction via environment 

Modelling the behaviour (intentions, beliefs, actions, 
capabilities, and states) of other robots can lead to more 
effective cooperation between robots.  
Communications requirements can also be lowered if each 
robot has the capability to model the behaviour of other 
cooperative robots.  

Modelling of other robots entails more than implicit 
communication via the environment or perception: it requires 
that the modeller has some representation of another robot, 
and that this representation can be used to make inferences 
about the actions of the other robot. 
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In applications where robots must cooperate, modelling has 
been explored most extensively in the context of 
manipulating a large object.  

Many solutions have exploited the fact that the object can 
serve as a common medium by which the robots can model 
each other. 

In a rigid body carrying task, each robot uses a probabilistic 
model of the other agent. When a risk threshold is exceeded, 
an agent communicates with its partner to maintain 
coordination, Miyabe et. al. (2004). 

The simplest, most limited type of interaction occurs when 
the environment itself is the communication medium, and 
there is no explicit communication or interaction between 
robots. This modality has also been called "cooperation 
without communication" by some researchers. Systems that 
depend on this form of interaction have been discussed in 
Gueaieb et. al. (2003). 

This type of interaction is suited for robots with force sensors 
which are connected in virtual links using the handled 
objects. In the case of cooperative handling due to problems 
presented in section 3 (gripper slip, non rigid objects) an 
Ethernet link is also required. 

5.2 Interaction via communications 

This form of interaction involves a type of explicit 
communication; in which an media access protocol is used 
for inter-robot communication, Kawasaki et. al. (2006), 
Martinez-Rosas et. al. (2006).  

Our approach uses only I/O and Ethernet communication in 
order to synchronize the robot movements. There are two 
types of strategies used: 

 In the case of collaborative object handling the first robot 
computes offline a set of points which the second robot 
will follow; here before the movement begins the robots 
make a communication over Ethernet for 
sending/receiving the set of points; at online stage 
movements are synchronized by activating/deactivating 
an I/O line to signal the movement start/stop. 

 The other case when the robots use a shared workspace 
assumes that I/O lines are used to signal if a robot has a 
privileged status (whether it is the first which accesses the 
shared workspace), and to signal the beginning and the 
end of each movement, as well as the Ethernet line highly 
used to transmit the current position. 

Fig. 5 presents an algorithm wich allow the access to a 
shared workspace for two robots without the risk of 
collision. Using the kinematics,  each robot is aware of the 
position of the other robot in space and the risk of collision 
is determined. Based on the robot priority and the 
communication, the workspace is cleared in order that the 
robot with the biggest priority to access the workspace.  

6. CONCLUSIONS 

The paper discusses two types of robot applications with 
robot movement synchronization needed. 

 
 
 
  
 
 

 

 

 

 

 

 

 

                             Fig. 5. Shared workspace access algorithm. 
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The first discussion case (Fig. 6) can be applied in cases 
where the robots are handling an object which can be heavy 
enough that a robot could not handle by itself, or the object 
has a shape that is very difficult to be grasped and handled by 
one robot; the robots are connected and each movement must 
be synchronized. 

 

Fig. 6. Collaborative object handling. 

In this first case we managed to use two Adept Cobra s600 
industrial robots to handle an object without sensing the 
forces using force sensors, but by using high speed I/O lines 
to synchronize robot movements. One robot which knows 
how the handled object will be moved, computes the 
trajectory for both robots based on the virtual linkage and the 
kinematics of robots, and then each movement is 
synchronized using the I/O lines. 

This method is much cheaper than using force sensors, is 
reliable and solves some problems which appear to 
decentralized force control (here the object can be made of 
any material rigid or not, the grippers can be vacuum 
grippers, etc.) all that because the force sensing is not needed 
anymore. 

 

Fig. 7. Shared workspace access. 

In the second case (Fig. 7) the problem was to synchronize 
the movements of robots in such way that the robots will 
access a shared workspace without the risk of collision using 
an optimal method which simulates the behaviour in 
"magnetic fields" (the low privilege robot is pushed back by 
the high privilege robot but is attracted by the destination 
position). 

The implementation of this second case is based on high 
volume of Ethernet communication. During the tests it has 

been observed that due to communication delays, in some 
situations where the robots access the shared workspace, 
there is a small delay between consecutive movements of the 
robots (despite this problem synchronization depending only 
on the high speed I/O lines).  

The problem can be solved using the method of interaction 
via environment - in our case the controller memory. The 
robots can be controlled using a single Adept Smart 
Controller CX in dual configuration. This solution solves the 
communication delay adding a plus of performance. 
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