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Abstract: There exist nonlinear models in the integrated navigation system of strapdown inertial 
navigation system (SINS) and GPS. So it is appropriate to use particle filters to estimate the states. This 
paper focuses on the nonlinear problems when there exists large initial azimuth error in the SINS errors. 
In this paper, particles are driven to the regions of high probability by applying the error correction 
technique of Dynamic Matrix Control (DMC) to general particle filters and propose an improved particle 
filter. The proposed particle filter is then applied to the high-dimensional state model of SINS/GPS 
integrated navigation system. The simulation results show that the new algorithm doesn’t need accurate 
error models of inertial measurement unit (IMU) but can still perform well and achieve more accurate 
estimates than unscented Kalman filter (KF). 
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1. INTRODUCTION 

For SINS/GPS integrated system, GPS is a referenced 
navigation system and SINS is to be corrected for cumulative 
errors. It is the most popular way of integrated systems and 
often used to improve the navigation performance of SINS 
and GPS. However, the nonlinearity of SINS/GPS in some 
situations has a serious effect on the filtering performance of 
the system. So nonlinear filter algorithms have to be applied 
to the nonlinear models of SINS/GPS errors of which the 
state models may be nonlinear or the measurement models or 
both.  

Particle filters can be applied to nonlinear models or non-
Gaussian noise models. The more nonlinear model, or the 
more non-Gaussian noise, the more potential particle filters 
have (Gustafsson et al., 2002). To handle the nonlinear filter 
problems of SINS/GPS, particle filters have been introduced 
(Carvalho et al., 1997). But the dimension of the state space 
representing a complete set of SINS errors is quite high(≥15) 
and a direct application of particle filters shows that a vast 
number of particles are needed for particle filters to perform 
well (Nordlund & Gustafsson, 2001). That’s because particle 
filters have the drawback of high computational complexity 
for high-dimensional system models and moreover, their 
filtering performance degrades quickly when the dimension 
increases. Paul Quang et al. (2010) have proved that the 
filtering error can grow exponentially with the dimension in 
the case of a linear tracking model. In high-dimensional 
systems, authors in (Bengtsson et al., 2008; Snyder et al., 
2009) have proved that the particle size needs to essentially 
grow exponentially with the dimension to avoid weight 
degeneracy. So particle filters are not efficient when applied 
to high-dimensional systems (Daum et al., 2003). 

In order to reduce the required particle size and avoid 
degeneracy for high-dimensional system models, the 
traditional method is to apply marginalization techniques 
(Nordlund & Gustafsson, 2001) to particle filters, which 
marginalize out the linear states to be estimated with Kalman 
filter. The combination of Kalman filter (KF) and particle 
filters is called Rao-Blackwised particle filters (RBPFs) 
(Doucet et al., 2000). RBPFs can reduce the computational 
complexity when there exists linear Gaussian state-space 
substructure in the system models. But if the system models 
don’t have linear Gaussian parts, RBPFs are degenerated to 
general particle filters and become too computationally 
expensive. Authors in (Chorin et al., 2010; Leeuwen, 2010) 
exploit implicit sampling to remedy the high computational 
complexity, which firstly find regions of high probability and 
then look for particles that assume them and then guide them 
one by one towards the high probability regions. In this way 
the computational complexity can be reduced apparently. In 
this paper, particles are driven to the regions of high 
probability according to their observation errors and propose 
an improved particle filter by fusing general particle filters 
and the error correction technique of Dynamic Matrix 
Control (DMC). The fusion process is called state 
reconstruction modifying particles’ states based on their 
observation errors. Due to the introduction of the error 
correction technique, the inertial-measurement-unit (IMU) 
errors can be regarded as the uncertainty errors of SINS and 
so the SINS errors can be modeled as a 9-dimension state 
model with Gaussian white noises. The computer simulation 
is performed to compare the improved particle filter with 
unscented Kalman filter (KF) (Julier & Uhlmann, 2004) in 
performance. The simulation results demonstrate that, 
compared with unscented KF, the improved algorithm can 
perform better and lead more accurate estimates. 
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The rest of the paper is organized as follows. Section II 
describes the system model of SINS/GPS when there exists 
large initial azimuth error. Then a general particle filter 
algorithm is presented in Section III. Section IV studies the 
error correction technique of DMC and proposes the 
improved particle filter algorithm based on state 
reconstruction. Section V presents the simulation results, and 
finally section VI concludes the paper. 

2. SYSTEM MODEL FOR SINS/GPS INTEGRATED 
SYSTEM  

In this paper, integrated SINS/GPS is studied through loosely 
coupled architecture. The SINS attitude, velocity and position 
are corrected by comparing estimates of velocity and position 
generated by GPS with estimates of the same quantities 
provided by SINS. The local level geographic frame ENU 
(East-North-Up) is chosen as the navigation frame (denoted 
as n). The axes of body frame (denoted as b) are lateral axis, 
longitudinal axis and vertical axis respectively. When there 
exists large initial azimuth error, the state model of SINS 
errors becomes nonlinear. 

2.1  State Model 

The state model consists of the SINS attitude error equation, 
velocity error equation and position error equation. When 
attitude errors are small, the attitude error equation can be 
approximated as linear time-varying equation with Gaussian 
noise approximations. But if attitude errors are too large to be 
approximated, the attitude error equation becomes nonlinear 
time-varying equation. In this paper, the simulation is aimed 
to investigate the performance of SINS/GPS with large initial 
azimuth error and small horizontal attitude errors. The state 
model of SINS is 

                             ( )δ= + +X FX G φ ΓW&                           (1) 

where X  is given as 
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where δφ , nδ v ,δ p  are the vector of attitude errors, velocity 
errors and position errors respectively. F is given as 
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where the elements of F  are shown as follows 

                       

10 0

1 0 0

tan 0 0

R h

R h
L

R h

 − + 
 =  +
 
  + 

φvM                          (4) 

             

2

2

2

2

0 0
( )

sin 0
( )

sec tancos 0
( )

N

E

E E

v
R h

vL
R h

v L v LL
R h R h

 
 

+ 
 

= −Ω − 
+ 

 
 Ω + − + + 

φpM           (5) 

                      ( ) ((2 ) )n n n
ie en= × − + ×vv φvM v M ω ω                   (6) 

        

2

2

2

2

0 0
( )

( ) 2 sin 0
( )

sec tan2 cos 0
( )

N

n E

E E

v
R h

vL
R h

v L v LL
R h R h

 
 

+ 
 

= × − Ω − 
+ 

 
 Ω + − + + 

vpM v     (7) 

                             

10 0

sec 0 0

0 0 1

R h
L

R h

 
 + 
 =  +
 
 
 
 

pvM                      (8) 

                   

2

2

0 0
( )

sec tan sec
0

( )
0 0 0

N

E E

v
R h

v L L v L
R h R h

 − + 
 

= − + + 
 
 
 

ppM             (9) 

where R , h , L , Ω  are the radius of the earth, the local 
altitude, the local latitude and the earth rate respectively. 

( , , )n T
E N Uv v v=v  is the vector of velocities projected on the 

navigation frame. n
ieω  is the rotation rate of the earth frame 

with respect to the inertial frame projected on the navigation 
coordinate frame. n

enω  is the rotation rate of the navigation 
frame with respect to the earth frame projected on the 
navigation coordinate frame too. ( )δG φ  is given as 

                                 

3 1

( )
( ) ( )

0

n
in

n

g
g

δ
δ δ

×

 
 

= − 
 
 

φ ω
G φ φ f                        (10) 

where n
inω  is the rotation rate of the navigation frame with 

respect to the inertial frame projected on the navigation 
coordinate frame. nf  is the non-gravitational special force 
vector. ( )g δφ  is written as 
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Here ( , , )Tδ δθ δφ δψ=φ . Γ , W are written as 
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where n
bC  is the direction cosine matrix from the body frame 

to the navigation frame. b
ibδω  is the vector of gyro errors and 

b
ibδ f  is the vector of accelerometer errors. 

The discretization of the continuous-time state model (1) then 
can be formulated by 

1 1 1 1 1( )k k k k k kI T T− − − − −= + + +X F X G Γ W         (14) 
where T is the filtering time interval between 1k −  and k . 

1k −W  are Gaussian white noises of the accelerometer and 
gyro errors in the form of discrete time. 1k −Γ  and 1k −G  are 
expressed as 

1k T− = ⋅Γ Γ                            (15) 
[ ]1 1

( )k k
δ− −

=G G φ                      (16) 

2.2  Measurement Model 

The measurement model describes the relations between the 
GPS position and velocity measurements and the system 
states. So the measurement can be achieved by subtracting 
the GPS position and velocity from the SINS position and 
velocity respectively. The measurement model is 
                                      k k k k= +Z H X V                            (17) 

where kV  is the vector of the measurement noises. kH  is 
given by 
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3. SEQUENTIAL IMPORTANCE RESAMPLE PARTICLE 
FILTER 

Particle filter can solve nonlinear and non-Gaussian 
estimation problems. Considering the following nonlinear 
discrete-time model 
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where kX  denotes the state vector at kth time interval, kY  the 
measurements. 1k −W  are the process noises with known 
probability density function (PDF). kV  are the measurement 
noises which also have known PDF. They are assumed to be 
mutually independent. The SIR particle filter algorithm is 
given in the following algorithm (Gustafsson et al., 2002). 
I. Initialization. Generate N particles according to the PDF 

0( )p X  of initial state which is assumed to be known. 
II. Measurement update. Update the weights by the 

likelihood. 
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III. Resampling. Take N particles with replacement from the 
set 1{ }i N

k i=X  and the probability to take the particle i  is 
i
kw . 

IV. Prediction.  
1 ( , ), 1, ,i i i

k k kf i N+ = = LX X W  
V. Let : 1k k= +  and iterate to item 2. 

4. AN IMPROVED PARTICLE FILTER BASED ON 
STATE RECONSTRUCTION 

In order to reduce the number of particles and solve particle 
degeneracy, particles should be moved to high probability 
region as much as possible. In this paper, an improved 
particle filter is presented. Firstly, update particles’ states and 
then reconstruct the states by state reconstruction before 
calculating weights. The principle of state reconstruction is 
error-correction, which is to update particles’ states by 
increment inputs VU  based on new observation and desired 
observation. 

System model which is nonlinear in the state equation and 
linear in the measurement equation considered in this paper is 
as follows 
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where n
k ∈ ¡X  is the state vector at kth time interval, 

m∈ ¡U  system inputs, 1
q

k − ∈ ¡W  process noises, 
p

k ∈ ¡Y measurements and r
k ∈ ¡V  measurement noises. 

Here the distributions of 1k −W , kV and 0X  are assumed to be 
independent with known PDF. 

Dynamic matrix control theory was proposed by Cutler and 
others (Cutler & Ramakar, 1980). It is based on a discrete 
time step response model that calculates a desired change of 
the manipulated variables, or the inputs, which minimizes the 
error between the desired outputs and their status in real-time. 
Referring to the theory of DMC, because the measurement 
equation is linear, after knowing the numerical transfer 
coefficients ija  which represents the response of output 

iY ( 1:i p= ) of unit step input jU ( 1:j m= ), the outputs can 
be predicted by linear superposition of the predicted response 
of outputs of any input increment. For example, if the input 

jU  has an increment jVU  between 1k −  and k , then the 

output ( )i k%Y  can be updated as follows 

                             ( ) ( ) ( )î i ij jk k a k= +% VY Y U                     (21) 
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where ( )i k%Y  denotes the output without any change to the 
input jU from 1k −  to k . Provided every input has an 
increment between 1k −  and k , then (18) becomes 
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Equation (22) can be expanded for other outputs and then can 
be written in matrix form as 
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In order to avoid dramatic changes in the input 
increment ( )kVU , soft constraints are set to the size of the 
manipulated inputs. Then the optimal quadratic performance 
index is obtained as 

( ) ( )( ) ( )( ) ( ) ( )ˆ ˆmin
T T

k kJ k k Q k k R k= − − +Y Y Y Y U UV V  

(26) 

where 1k+Y  are the desired outputs at kth time interval. Q  is 
called error weight matrix and R  is called control weight 
matrix. The former is to depress the tracking errors and the 
latter is to depress the size of the manipulated inputs’ 
increment ( )kVU . Q  and R  are both non-negative matrix 
and usually taken as diagonal matrix to simplify the 
modulation process. 

Having equated the derivative of ( )J k  given by (26) to 0, 
the optimal control increments is given as 

               ( ) ( ) ( )( )1 ˆT T
kk Q R Q k

−
= + −VU A A A Y Y             (27) 

Put ( )kUV  back into the system model (20), then the 
corrected states at kth time interval can be written as 

                                   ( )ˆ
k k k= + VX X B U                          (28) 

If the system model has no control inputs U  and control 
matrix B , the paper presents that state reconstruction can be 
implemented according to the observability of state variables 
(Goshen-Meskin & Bar-Itzhack, 1990). 

(1) For states of high observability, the steps of state 
reconstruction are as above. The dimension of ( )kVU  is 
equal to the number of states of high observability.  

(2) For states of low observability relatively, state 
reconstruction can be realized by adding control matrix to the 
system model. For example, if the former m states of kX all 
have relatively high observability and ,j kX  ( j m> ) is one of 
the remaining states, which has lower observability or has no 
observability. The control matrix can be set as  
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where I  is an identity matrix and O  is a null matrix. 

The improved particle filter can be obtained by combining 
the state reconstruction described as above with SIR particle 
filter (Gustafsson et al., 2002). The new particle filter 
algorithm is written as follows. 

I. Initialization. Generate N particles according to the PDF 
0( )p X  of initial state which is assumed to be known. 

The weight of each particle is assigned 1 N . 
II. State reconstruction. Firstly, update the states of particles 

and then implement the steps of state reconstruction as 
above. If there is no input in system model, state 
reconstruction can be realized according to (29), (30) and 
(31). 

III. Measurement update. Update the weights by the 
likelihood. 
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IV. Resampling. Take N particles with replacement from the 
set 1{ }i N

k i=X  and the probability to take the particle i  is 
i
kw . 

V. Prediction.  
1 ( , ) , 1, ,i i i

k k k kf i N+ = + = LX X W BU  
VI. Let : 1k k= +  and iterate to item 2. 
 

5.  SIMULATION RESULTS 

In order to evaluate the filtering performance of the proposed 
particle filter algorithm in SINS/GPS, simulation test is 
carried out based on the INS toolbox of MATLAB in the 
laboratory situation. The initial velocity is assumed 0 in all 
axes. The object accelerates along straight line at 10 m/s² for 
ten seconds followed by climbing, horizontal 90° turning, 
straight cruising, climbing, horizontal 90° turning and 
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straight cruising without deceleration. The flight trajectory 
and velocity profiles are shown in the Fig. 1 and Fig. 2 
respectively. In the flight trajectory, climbing is accompanied 
by the pitching angle change and horizontal turning by the 
rolling angle change and the azimuth angle change. So the 
flight trajectory involves all attitude angle change process. 
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Fig. 1. Flight trajectory 
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Fig. 2. Velocity profiles 

For the GPS data generation, position accuracy is assumed to 
be 10 m and velocity accuracy is 1 m/s in all axes. It is also 
assumed that IMU in all axes has the same specifications. 
The tactical-grade sensors (Pusa, 2009) for IMU are 
presented as follows (without considering scale factor errors) 
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According to (1), W denotes IMU errors, including random 
bias, nonlinearity error, scale factor error, misalignment error 
and random white noise and so on. The new algorithm allows 
the IMU errors viewed as the uncertainty errors of SINS. So 
there is no need to extend the dimension of the system model 
and W is approximated to Gaussian white noise. The new 
proposed algorithm allows reducing the dimension of the 
state model and so can reduce the number of required 
particles to perform well. 

Because the state model (1) has no any manipulated input, it 
should calculate control matrix according to the state 
observability of the states for the proposed algorithm. 
Velocity errors and position errors are fully observable states 
because they have external measurement information 
provided by GPS. No matter what kind of movement, they all 
have high observability relatively. The azimuth attitude angle 
error has much lower observability than the level attitude 
angle errors, which even have the same observability as the 
velocity errors and position errors (Li et al., 2010). So the 
paper choose the velocity errors, position errors and the level 
attitude angle errors as the states of high observability and so 
the dimension of ( )kVU  is 8. In the simulation, the error 
weight matrix and the control weight matrix are chosen as 

                                              6 6Q ×= I                                  (32) 

                                            8 810R ×= I                                (33) 
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Fig. 3. Attitude errors 

Throughout the simulation, the following initial errors are 
assumed: initial attitude angle errors [0 0 20°], initial velocity 
errors 1 m/s in all axes, initial position errors 10 m in all 
axes. Unscented KF (Julier & Uhlmann, 2004) is used to 
compare with the new algorithm in the simulation. In this 
paper, 100 particles are utilized for the improved particle 
filter. The attitude errors, velocity errors and position errors 
are shown in Fig. 3, Fig. 4 and Fig. 5 respectively. It can be 
seen from Fig. 3 that the converged roll angle error are 
around 0 and the azimuth angle error rapidly converges to 0 
although there exists large error in the transient response of 
the proposed algorithm, which proves that the proposed 
algorithm has good convergence performance for the roll 
error and rapid convergence for the azimuth error. The pitch 
angle error converges within 110 seconds and the level is 
about 22 minute of arc. So the algorithm has almost the same 
convergence ability as Unscented KF for the roll error and 
azimuth error, but worse for the pitch angle error. From Fig. 
4 and Fig. 5, the velocity errors and position errors are rather 
small in the whole flight trajectory, which clearly 
demonstrates that the new algorithm has rather good 
convergence and stability performance for the velocity errors 
and position errors. But for unscented KF, the convergence 
and stability performance is not as good as the proposed 



CONTROL ENGINEERING AND APPLIED INFORMATICS                            63 
 

     

 

algorithm because of the larger errors during the whole flight 
trajectory. The root mean square error (RMSE) of the 
velocity errors and position errors for the new algorithm are 
shown in Table 1 and Table 2 respectively. It apparently 
shows that the new algorithm has much better performance 
for SINS/GPS than GPS–only accuracy. 
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Fig. 4. Velocity errors 
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Fig. 5. Position errors 

Table 1.  Velocity errors RMSE 

Velocity Direction RMSE 
East velocity error 0.2259 

North velocity error 0.2293 
Up velocity error 0.2250 

Table 2.  Position errors RMSE 

Position Direction RMSE 
East position error 1.8137 

North position error 2.1560 
Up position error 2.0752 

 

6. CONCLUSIONS 

The paper proposes an improved particle filter for high-
dimensional system models by fusing general particle filters 
and the error correction technique of DMC, which can drive 
particles to the regions of high probability by modifying 
particles’ states based on their observation errors. If system 

models haven’t   manipulated inputs, it is presented that 
control matrices can be determined by the size of 
observability of state variables to perform state 
reconstruction process. 

The proposed improved particle filters provides better 
convergence and stability performance than unscented KF. 
Moreover, the algorithm doesn’t depend on accurate models 
of accelerator errors and gyro errors and so can reduce the 
dimension of the system models. Though the simulation 
results can demonstrate that the new algorithm is a useful 
filter algorithm for SINS/GPS, it still has limitations on state 
models of which the measurement models should be linear 
models. A further analysis on the theoretical convergence and 
the reduction of computational complexity due to DMC 
involved will be investigated in the future work. 
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