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Abstract: A key purpose of studying the problem of equivalence between two control systems is to 
transform a complex nonlinear system to a simple system whose controller is easy to realize real-time 
response in cyber-physical systems. Using the theories of singular distributions, necessary and sufficient 
conditions under which single-input non-autonomous systems are feedback equivalent to non-
autonomous low-triangular systems. Moreover, we presented a necessary and sufficient condition under 
which single-input non-autonomous systems are feedback equivalent to non-autonomous p-normal forms, 
which are special cases of low-triangular systems. Two examples are given to illustrate how to realize 
those equivalent transformations via state feedback and coordinate transformation. 
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1. INTRODUCTION 

Cyber-physical systems (CPS) are integrations of 
computation and physical processes [1, 2]. Distributed 
sensors, embedded computers and actuators in the CPS 
networks monitor and control the physical processes [3]. So 
there is a need for methods to reduce the computation loads 
of controllers working real-time in the embedded computers 
[4]. By using the equivalence between two control systems it 
is possible to transform a complex nonlinear system into a 
simple system whose controller is easy to realize real-time 
response. Differential geometry has universally regarded as a 
successful approach to study the equivalence problem [5]. 
Low-triangular forms are nonlinear systems attracting great 
attention. Backstepping, a technique for designing a 
controller for a nonlinear system, was advanced in the 1990s 
and now it is applied to low-triangular forms in general. If a 
nonlinear system is equivalent to a low-triangular form by 
state feedbacks and coordinate transformations, it is possible 
to design a controller by the backstepping technique. 

For the single-input case, Celikovsky and Nijmeijer provided 
necessary and sufficient conditions for the equivalence of 
nonlinear systems to low-triangular forms in [6]. The p-
normal forms are special nonlinear systems. Cheng and Lin 
provided necessary and sufficient conditions for nonlinear 
systems to be equivalent to non-autonomous p-normal forms 
by using coordinate transformations and state feedback of the 
type ( )u vα ξ= +  in [7]. Subsequently Respondek dealt with 
this problem using coordinate transformations and state 
feedback of the type ( ) ( )u vα ξ β ξ= +  in [8]. On the other 
hand, a series of exciting results on the issue of designing 
controller for the p-normal forms, not only the autonomous 
case but also the non-autonomous case, have been obtained 
[9, 10].  

In this paper, first we provide the necessary and sufficient 
conditions for nonlinear systems to be equivalent to the non-
autonomous low-triangular forms via state feedback and 
coordinate transformation. Second, we provide the necessary 
and sufficient conditions for nonlinear systems to be 
equivalent to the non-autonomous p-normal forms via state 
feedback and coordinate transformation. Those necessary and 
sufficient conditions are more convenient to be check than 
the conditions given in [6, 8], see Remark 1 and 2.  

The rest of the paper is organized as follows. Section 2 
illuminates the system equivalence problems discussed in this 
paper. The main results are formulated in Section 3 and 
Section 4. We conclude the paper in Section 5. 

2. PROBLEM FORMULATION 

Consider the non-autonomous nonlinear system 
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where T
1 2( , , , )nξ ξ ξ ξ= L , Ru ∈  is input, iF  and iF  are all 

smooth functions. The first question we pose in this note is 
whether the nonlinear systems is equivalent to the non-
autonomous low-triangular form via state feedback and 
coordinate transformations. The state feedback considered 
here is  

( , ) ( , )u t t vα ξ β ξ= + ,                                                  (2) 
where R R Rnα : × →  and R R R( 1 2 )n i j mβ : × → , = , , ,L  
are both smooth functions, and v  are the new input under 
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feedbacks. The smooth coordinate transformations are 
expressed as  

( )T
1( ) .( , ) ( , )nx T T t T tξ ξ ξ= = , ,L                                   (3) 

The non-autonomous low-triangular form is expressed as  
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                   (4) 

where 1, nx x,L  are state variables, v  is scalar input, 
1R R R( 1 1)i

if i n+: × → = , , −L  are all smooth functions 

satisfying 
a.e.

1 0( 1 1)i if x i n+∂ ∂ ≠ = , , −L  in a neighbourhood of 
the original point, the symbol a e. .  means almost everywhere, 
that is, 1i if x +∂ ∂  does not equal 0 almost everywhere or it 
equals 0 only in a null set, which is a set of measure zero.  

The second question we pose in this note is whether the 
nonlinear system is equivalent to, via state feedback (3) and 
coordinate transformations (4), the following non-
autonomous p-normal form 

1
1

1
1

1

1 2 1 1 2
0

1

1 1 1 1
0

( , )

( , , , )
n

n

p
p i i

i

p
p i i

n n n n n
i

n

y y t y y

y y t y y y

y v

ϕ

ϕ
−

−

−

=

−

− − −
=

= +
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where i
jϕ  are all smooth functions, and 1 2 1, , , np p p −L  are 

positive integer. Supposing that for a given non-autonomous 
p-normal form, 1 2 1 1np p p −= = = =L  is hold, it is easy to 
verify that the system can be exactly linearized by state 
feedback and coordinate changes. 

According to the symbols used in differential geometry, the 
time-variant vector fields corresponding to System (1) are  

1
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1
1
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∂ ∂ ∂
= + + + ,

∂ ∂ ∂
∂ ∂

= + + ;
∂ ∂

L

L
                                             (6) 

The vector fields corresponding to the non-autonomous low-
triangular form are  

1 2
1 2

.

n
n

n
n

f f f f
t x x x

g g
x

∂ ∂ ∂ ∂
= + + + + ,

∂ ∂ ∂ ∂
∂

=
∂
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                            (7) 

And the vector fields corresponding to the non-autonomous 
p-normal form are  

,1 ,2 , 1
1 2 1

.

p p p n
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t y y y
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y
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where 
1

, 1 1 1
0

( , , , ) ( 1, 2, , 1)
j

j

p
p i i

p j j j j j
i

f y t y y y j nϕ
−

+ +
=

= + = −∑ L L . 

Let 
1

n
i

i
i

X X x
=

= ∂ ∂∑  and 
1

n
i

i
i

Y Y x
=

= ∂ ∂∑  be two vector 

fields, the Lie bracket of X  and Y  is a third vector field 
defined by  

1

1 1

[ ] .ad ad
j jm m

i i
X X

j i i i j

Y XY Y X Y X Y
x x x= =

 ∂ ∂ ∂
= = , = − ∂ ∂ ∂ 

∑ ∑     (9) 

Let 0adX Y Y=  and 1ad adX XY Y= . Then 1ad ad (ad )i i
X X XY Y−=  

holds for any 1 2i = , ,L . A distribution generated by the 
vector fields 1 hX X,⋅ ⋅ ⋅,  is written as 1span{ }hX X, ⋅ ⋅ ⋅, . Let 

1D  and 2D  be two smooth distributions. Then 1 2D D⊕  
expresses the distribution generated by all the vector fields 
belonging to 1D  or 2D . A distribution is called nonsingular 
in U , which is an open subset of R n , if the dimension of 
distribution dim( )D  is fixed in U ; otherwise, it is called 
singular. The nonsingular distribution 1span{ }hX X, ⋅ ⋅ ⋅,  is 
involutive if and only if ad

iX jX  belongs to this distribution 

for any 1i j h, = , ,L . Let D  be a singular distribution. A 

nonsingular distribution is written as D  if 
a.e.
=D D  is 

satisfied. For vector field X  as defined above, the coordinate 
transformations induces a map 

1 1

( )
n n

i
jy

i j j ix

TT X X
x y

 
 
 
 ∗
 = = 
 

∂ ∂
=

∂ ∂∑ ∑                                           (10) 

where T∗  is called push forward map [11]. 

3. TRANSFORMING A NONLINEAR SYSTEM TO A 
NON-AUTONOMOUS LOW-TRIANGULAR FORM 

In this section, we will provide the necessary and sufficient 
conditions for nonlinear systems to be equivalent to the non-
autonomous low-triangular forms. In order to formulate the 
conditions we will need the following lemmas [11]. 

Lemma 1. Let 1 2 1 2( , ) ( , , , , , , , )m nz x z z z x x x= L L  be the 
coordinates in space R Rm n× . If vector field 

1 2
1 2

( , ) ( , ) ( , ) ,n
n

X a z x a z x a z x
x x x
∂ ∂ ∂

= + + +
∂ ∂ ∂

L             (11) 

is identically one dimensional, then there exist partial 
coordinate transformations ( ), ( , )z y y z x=  such that 
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Lemma 2. Let  

1 2
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1,2, ,

∂ ∂ ∂
= + + +

∂ ∂ ∂
=

L

L

i i i i
n

n
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x x x

i n
           (13)                                                                                      

be vector fields. Suppose that the distributions 

{ }1 2span , , , , 1, 2, , .i iD X X X i n= =L L                         (14) 

are identically i  dimensional, then there exist partial 
coordinate transformations ( ), ( , )z y y z x=  such that 

1 1

span , , , , 1,2, , .i

n n n i

D i n
y y y− − +

 ∂ ∂ ∂
= = ∂ ∂ ∂ 

L L             (15) 

Theorem 1. System (1) can be converted into the non-
autonomous low-triangular form via feedback (2) and 
coordinate changes (3) if and only if it satisfies the following 
two conditions. 

 (i) the distributions 

1

2 1 1 1 1

1 1 1 1

=span{ },
= span{ad | },

 ,
span{ad | },
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F
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=
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                             (16) 

satisfy 
. .

dim( )
a e

iD i= ;                                                            

 (ii) the nonsingular distributions ( 1 n)i iD = , ,L  satisfy 

1nD D⊃ ⊃ .L                                                                     (17) 

Proof: (Necessity) Suppose System (1) can be converted into 
the non-autonomous low-triangular form via feedbacks (2) 
and coordinate changes (3). Then System (1) can be 
converted into the latter only via coordinate changes 

( , )x T t ξ= . Hence we must verify that conditions (i, ii) hold 
for System (4).  

According to Eq. (16), the following equality holds. 

{ }1 span span .
n

D g
x

 ∂
= =  ∂ 

                                             (18) 

The low-triangular form of System (4) implies that for every 
1 1g D∈  we have 

1 2 1 1
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                  (19) 

The general step follows an inductive argument j . Assuming 
that 1 1i ig D− −∈ , 
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Thus, we have shown that the conditions (i, ii) hold for 
System (4). 

 (Sufficiency) It follows from condition (ii) that there exist n  
nonsingular vector fields 1 2, , , nX X XL  such that  

{ }1 1=span , , , , 1, 2, , .i
n n n iD X X X i n− − + =L L                     (21) 

Under proper coordinate changes, the equality  

1 1
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=  ∂ ∂ ∂ 

L                                     (22) 

holds in a neighbourhood of the original point. According to 
condition (i), we obtain 
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and 
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1
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−
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                              (24) 

under the coordinates ( , )t x . From Eq. (24), it is clear that 

00, ( , ) {1, 2, , 2}.
∂
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∂
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Furthermore, in general, condition (i) implies that  
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for 2j n= , ,L . It means that  

00 ( , ) , 1.
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= ∀ ∈ ∀ − >
∂
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t x N j i

x
                                        (28) 
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Together with Eqs. (27) and (28), System (1) is in the form of 
System (4) under proper coordinates.  

Remark 1. For the autonomous case, Ref. [6] provided 
necessary and sufficient conditions for nonlinear systems to 
be equivalent to the low-triangular forms. For checking those 
conditions, we have to select the following vector fields as 

1 2 1 1 2, ad , , adn n
F FG G G G G G− −= = =L . So condition (i) in 

Theorem 1 provides a possibility to simplify the 
computational processes of Lie brackets by choosing especial 
vector fields. 

The proof of Theorem 1 is constructive. The following 
example is given to illustrate how to realize the equivalent 
transformations mentioned in Theorem 1 by the method 
implied in the proof. 

Example 1. Consider the following 3 dimensional nonlinear 
system.  

4 2 3 2
1 3 3 2 2 1 1 2 3

4 2 2
2 3 3 2 1 3 3 2 3

2
3 1 2 3
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cos 2 2 ( )
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ξ ξ ξ ξ

= + + + + + + −

= + + + + −

= + −

&
&
&

      (29) 

Let  

4 2 3
3 3 2 2 1 1

1

4 2
3 3 2 1 3 3
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( cos 2 )

F t t
t

t

ξ ξ ξ ξ ξ ξ
ξ

ξ ξ ξ ξ ξ ξ
ξ ξ

∂ ∂
= + + + + + +

∂ ∂
∂ ∂
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∂ ∂

         (30) 

and 

2 2 2
2 3 3 2 3 2 3

1 2 3

( ) 2 ( ) ( ) .G ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ
∂ ∂ ∂

= − + − + −
∂ ∂ ∂

        (31) 

The distribution generated by singular vector field G  equals 
another distribution generated by the following nonsingular 
vector field almost everywhere. 

1
3

1 2 3

2G ξ
ξ ξ ξ
∂ ∂ ∂

= + +
∂ ∂ ∂

                                                  (32) 

Since computing 1adF G   is easier than adF G  we compute it.  

1 3 2 3 2
3 3 3 3

1 2

ad (4 2 ) (4 2 ) .F G ξ ξ ξ ξ
ξ ξ
∂ ∂

= + + +
∂ ∂

                     (33) 

The distribution generated by singular vector field 
1adF G equals another distribution generated by the following 

nonsingular vector field almost everywhere. 

2

1 2

G
ξ ξ
∂ ∂

= +
∂ ∂

                                                                 (34) 

Due to 1 1 2 1span{ad , } span{ , }F G G G G= , we compute 2adF G  

instead of ( )1ad adF F G . 

2 4 2 2
3 3 2 2

1 2

ad (cos 3 - 6 3 ) cosF G t tξ ξ ξ ξ
ξ ξ
∂ ∂

= + + +
∂ ∂

          (35) 

Note that 2 2 4 2 2
3 3 2 2

1

ad cos( ) (3 - 6 3 ) ,F G t G tξ ξ ξ ξ
ξ
∂

− ⋅ = +
∂

it is 

feasible to choose 

3

3

.G
ξ
∂

=
∂

                                                                          (36) 

It is clear that 2 2 1 3 2 1span{ad , , } span{ , , }F G G G G G G=  holds. 
By direct calculation 1span{ }G , 2 1span{ , }G G , 

3 2 1span{ , , }G G G  is a nested sequence of nonsingular 
involutive distributions. It follows from Theorem 1 that 
System (29) can be converted into the non-autonomous low-
triangular form. Suppose the coordinate changes to realize the 
conversion are ( )1 2 3 1 2 3( , , ) ( , ), ( , ), ( , )x x x x T t T t T tξ ξ ξ= = , we 
can choose 1( , )T t ξ , 2 ( , )T t ξ  and 3 ( , )T t ξ  by the following 
equations 

d , 0, , 2,3

d , 0, , 1,2,3.

< >= < =

< >≠ = =

j
i

j
i

T G i j j

T G i j j
                                       (37) 

A solution of Eqs. (37) is  

2
1 1 2 3 3

2
2 2 3

3 3
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( ) ( ) ( )
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x t t t t t
x t t t
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ξ ξ ξ ξ

ξ ξ
ξ

= − − +

= −
=

                                     (38) 

Rewrite the system equations in terms of the new 
coordinates.  

3
1 2 1

4 2
2 3 3 2

3 1 2

4 cos

cos
.

x x x t
x x x x t
x x x u

= +

= + +
= +

&
&
&

                                                        (39) 

Now the system is in the form of System (4). 

4. TRANSFORMING A NONLINEAR SYSTEM TO A 
NON-AUTONOMOUS P-NORMAL FORM 

In this section, we will provide the necessary and sufficient 
conditions for nonlinear systems to be equivalent to the non-
autonomous p-normal forms. The following lemma is 
important in singularity theory [12]. 

Lemma 3. Let ( , )z wπ π=  be a C ∞ function from 1R R +× i  to 

R .  Suppose, for a positive integer k , (0,0) 0π∂
≠

∂

k

kz
holds, 

but (0,0) 0
i

iz
π∂

=
∂

 for all integers 1 1≤ ≤ −i k . Then there 

exists a coordinate change ( , )z z wρ=%  such that 

( )
1

1

0
( , ) ( , ), ( )

k
k i

i
i

z w z w w z a w zπ π ρ δ
−

−

=

= = + ∑% %                    (40) 
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where ( )ia w  are smooth functions satisfying (0) 0ia = for 
0 1i k≤ ≤ − , and  

1 2 +1, =0,1,
1 2 , =1,2, .  
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k i i

δ
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= ± =
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Theorem 3. System (1) can be converted into the non-
autonomous p-normal form via feedback (2) and coordinate 
changes (3) if and only if it satisfies the following two 
conditions. 

(i) System (1) can be converted into non-autonomous low-
triangular form; 

(ii) The low-triangular system converted from System (1) 
satisfies (0,0) 0(1 1)if i n= ≤ ≤ −  and  

( )
1 0

,
min 0 , 1 1.

j
i

ijj
i x

f t x
p i n

x + =

 ∂ ≠ = ≤ ≤ − ∂  
                      (42) 

Proof: (Necessity) Since the non-autonomous p-normal forms 
are special low-triangular form and System (5) satisfies 
condition (ii) obviously, it suffices to prove that if a non-
autonomous low-triangular form can be converted into a non-
autonomous p-normal form then it satisfies condition (ii). We 
first show that it is only the low-triangular coordinate 
transformations to help us to convert a low-triangular form to 
another low-triangular system, then, by calculating selected 
partial derivatives we check the condition (ii). 

For converting System (4) to into System (5), we need a 
“low-triangular” coordinate transformation 
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The inverse transformation is also a “low-triangular” 
coordinate transformation 
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From System (43) and System (44), it is clear that the 
following equalities  
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must be hold. For System (4), we compute 
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 ∂∂ ∂ ∂
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and 
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From Eqs. (46) and (47), we see that 1

k k
i if x +∂ ∂  is the sum of 

the following items  

1 2

1 2

, , ,

1 1 1

1 1 1

1 1 1

,

1, 1, 1, 1.

k
ff f

j
xx x

nn n k
p i p i p ii

k
i i i i

nn n j
i i i

j
i i i
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f x

f f fx
y y y y
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+ + +
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  ∂ ∂ ∂   ∂  ⋅ ⋅ ⋅ ⋅        ∂ ∂ ∂ ∂       
     ∂ ∂ ∂ ⋅ ⋅ ⋅ ⋅      ∂ ∂ ∂      
≥ ≥ ≥ ≥

L

L                       (48) 

It implies that for every integer satisfying 1 ik p≤ <  

1 0
0k k

i i x
f x + =

∂ ∂ =  and 1 0
0i ip p

i i x
f x + =

∂ ∂ ≠ . 

(Sufficiency) We try to prove the only if part of the theorem 
by a constructive approach. From condition (i), System (1) 
are in the low-triangular form 

1 1 1 2

1 1 1 2

1 2 1 2

( , , )

( , , , , )
( , , , , ) ( , , , , ) .

n n n

n n n n n

x f t x x

x f t x x x
x f t x x x g t x x x u

− −

=

=
= +

&
M
& L
& L L

                   (49) 
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And It is guaranteed by condition (ii) that  

11

12

0 0 1
(0,0)

0 .

i

i

i pf
i px

= ≤ ≤ −∂
≠ =∂ 

                                          (50) 

By using Lemma (3) there exist partial coordinate changes 

1,

1,2 1 1 2

1 and 2

( , , ),
j jx x j n j

x t x xρ

= ≤ ≤ ≠

=
                                           (51) 

where 1ρ  is invertible respect to 2x , such that  

1
1

1

1 1 2 1 1,2 1 1,1 1,2
0

ˆ( , , ) ( , ) ,
p

p i i

i
f t x x x t x xδ ϕ

−

=

= + ∑                                 (52) 

where 1 1δ = ± , 1 (0,0) 0iϕ = . The System can be express as 

1
1

1

1,1 1 1,2 1 1,1 1,2
0

1,2 1,2 1,1 1,2 1,3

1, 1 1, 1 1,1 1,2 1,

1, 1, 1 2 1, 1 2

( , )

( , , , )

( , , , , )
( , , , , ) ( , , , , ) .

p
p i i

i

n n n

n n n n n

x x t x x

x f t x x x

x f t x x x
x f t x x x g t x x x u

δ ϕ
−

=

− −

= +

=

=

= +

∑&

&
M
& L
& L L

               (53) 

According to condition (i),  

1,2 2

21,3

0 0 1
(0,0)

0 .
∂ = ≤ ≤ −

≠ =∂ 

i

i

f i p
i px

                                         (54) 

holds. There exist partial coordinate changes 

2, 1,

2,3 2 1,1 1,2 1,3

ˆ 1 and 3
ˆ ( , , , ),

j jx x j n j
x t x x xρ

= ≤ ≤ ≠

=
                                          (55) 

where 2ρ  is invertible respect to 1 3x ， , such that  

2
2

1

2,2 2,1 2,2 2 2,3 2 2,1 2,2 2,3
0

( , , ) ( , , ) ,
p

p i i

i
f t x x x s x x xδ ϕ

−

=

= + ∑                 (56) 

where 2 1δ = ± , 2 (0,0) 0iϕ = . The System can be rewritten as 

1
1

2
2

1

2,1 1 2,2 1 2,1 2,2
0

1

2,2 2,2 2,3 2 2,1 2,2 2,3
0

2,3 2,3 2,1 2,2 2,3 2,4

2, 1 2, 1 2,1 2,2 2,

2, 2, 2,1 2,2 2, 2,1 2,2

( , )

( , , )

( , , , , )

( , , , , )
( , , , , ) ( , , ,

p
p i i

i

p
p i i

i

n n n

n n n n

x x t x x

x x t x x x

x f t x x x x

x f t x x x
x f t x x x g t x x

δ ϕ

δ ϕ

−

=

−

=

− −

= +

= +

=

=

= +

∑

∑

&

&

&
M
& L
& L L 2,, ) .nx u

    (57) 

Repeat the previous steps, and then System (1) is converted 
into the form of   

1
1

1
1

1

1,1 1 1,2 1 1,1 1,2
0

1

1, 1 1 1, 1 1,1 1, 1 1,
0

1, 1, 1,1 1, 1, 1,1 1,

( , )

( , , , )

( , , , ) ( , , , ) .

n
n

p
p i i

n n n n
i

p
p i i

n n n n n n n n n n n
i

n n n n n n n n n n n n

x x t x x

x x t x x x

x f t x x g t x x u

δ ϕ

δ ϕ
−

−

−

− − − −
=

−

− − − − − − − − −
=

− − − − − − −

= +

= +

= +

∑

∑

&

M

& L

& L L

(58) 

Let 1,n n ny x −=  and 1 1 1, 1n n n ny xδ− − − −= , we obtain 

2
2

2

1
1

1
2 2 1 2

1, 2 1 1
0 11

1

1 1 1 1,1 1, 1 1
0

( , , , )

( , , , , ) .

n
n

n

n
n

ip
p in n n

n n n np i
i nn

p
p i i

n n n n n n n n n
i

t x x
x y y

y y t x x y y

δ ϕ
δδ

δ ϕ

−

−

−

−
−

−
− − −

− − − −
= −−

−

− − − − − − −
=

= +

= +

∑

∑

L&

& L
       (59) 

Let ( )2
2 2 1 1, 1

np
n n n n ny xδ δ −

− − − − −= . Hence the two equations in 
Eq. (59) are both in the form of System (5). Repeat the 
previous steps and choose proper feedback, then System (1) 
is converted into System (5).  

Remark 2. For the autonomous case, [8] provided necessary 
and sufficient conditions for nonlinear systems to be 
equivalent to the p-normal forms. For checking those 
conditions, we have to compute Lie bracket 

1 2 -1np p p+ + +L  times. So the conditions given in Theorem 
2 are easy to check. 

Example 2. Consider the following non-autonomous system 
slightly different from System (29). 

4 2 3
1 3 3 2 2 1 1

4 2
2 3 3 2 1 3 3

3 1

cos 4 cos

cos 2 2

.

t t u

t u
u

ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

ξ ξ

= + + + + + +

= + + + +

= +

&
&
&

                    (60) 

Followed Example 1 we can convert System (60) into a non-
autonomous low-triangular form 

3
1 1 1 2 2 1

4 2
2 2 1 2 3 3 3 2

3 3 1 2 3 3 1 2 3 1

( , , ) 4 cos

( , , , , ) cos
( , , , , ) ( , , , , ) .

x f t x x x x t
x f t x x x x x x t
x f t x x x g t x x x u x u

= = +

= = + +
= + = +

&
&
&

               (61) 

System (61) satisfies 1 2 0f x
=

∂ ∂ =
x 0

, 2 2
1 2 0f x

=
∂ ∂ =

x 0
, 

3 3
1 2 1f x

=
∂ ∂ =

x 0
, 2 3 0f x

=
∂ ∂ =

x 0
, 2 2

2 3 1f x
=

∂ ∂ =
x 0

.  By 

Theorem 2 System (60) can be further convert into a non-
autonomous p-normal form. The first equation of System (61) 
is in the form of p-normal form. So we choose the partial 
coordinate changes as 1 1y x= , 2 2y x= . Using the approach 
provided in [12] we know that the second equation of System 
(5) is in the form of p-normal form by setting the new state 
variable 4 2 1 2

3 3 3( )y x x= + . Choosing a proper feedback 
System (60) can be express as the following equations in 
terms of the new coordinates. 
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3
1 2 1

2
2 3 2

3

4 cos

cos
.

y y y t
y y y t
y v

= +

= +
=

&
&
&

                                                             (62) 

6. CONCLUSIONS 

One purpose of studying the problem of equivalence between 
two control systems is to transform a complex nonlinear 
system to a simple system whose controller is easy to realize 
real-time response in cyber-physical systems. It is of 
immediate significance to the design and analysis of a class 
of nonlinear systems. By using differential geometric control 
theory we provide the necessary and sufficient conditions 
under which non-autonomous systems are feedback 
equivalent to non-autonomous low-triangular systems and 
non-autonomous p-normal systems respectively. We also 
discuss how to realize the conversions and how to simplify 
the computation procedure of checking those conditions. 
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