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Abstract: In this paper we propose a new technique for finding the optimum FIR
compaction filter adapted to signal statistics. The main novelty of our approach is
the transformation of the original problem into the maximum eigenvalue minimiza-
tion of a parameterized Toeplitz matrix, with a low number of variables. This is
a typical application of semidefinite programming and may be solved with reliable
interior-point algorithms. The optimal filter is then found either solving a quadratic
system with a Newton-Raphson algorithm, or via a matrix Riccati equation. The
numerical experiments show that the optimal compaction filter is obtained with good
numerical accuracy and affordable execution time for filters of order up to 100. A
characterization of optimal filters is also given, coherent with our matrix formulation
of the optimization problem.

1. INTRODUCTION

Filter banks adapted to signal statistics have
received a large interest in the latest years due
to their capability of compacting the energy
of the input signal at the output of the first
few channels (by selecting and ordering the
principal components). As information from
narrowband signals is easily extracted by filter
banks, their applications in coding and com-
pression are straightforward. The benefit is
greater for signals with multiband structure,
where classical designs prove to be less effi-

cient. For its ease of implementation and sta-
bility properties, the class of FIR filters is of
particular importance and our paper will be
confined to it.

An optimum compaction filter maximizes the
energy of its output, for the given class of
input signals. For two-channel filters, with
optimal subband bit allocation, an optimum
compaction filter ensures also the optimality
of the overall coding gain. In the general case,
the optimum coding gain may not be obtained
with FIR filters.

For a historical overview of proposed tech-
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niques, we refer to [6]. We outline here the
most recent approaches, giving also other de-
tails when the context will require it. As ini-
tially posed (see problem (H) in section 1),
finding the optimal compaction filter is a non-
convex optimization problem which can be
dealt with reliably only for very small orders.
A turnout was produced by the approach via
the product filter, which yielded several algo-
rithms. Semi-infinite programming (SIP) was
used by Moulin et al [10] as a way of approx-
imating the solution. The same technique
was adopted in the m-channel case [11], where
once the filter for the first channel is obtained,
the others are directly deduced in a parau-
nitary polyphase representation of the filter
bank (for two-channel filter banks, the second
filter results trivially from the first). Opposite
to SIP methods, which are general, subopti-
mal and iterative, Kiraç and Vaidyanathan [6]
designed an analytical method, which finds
the optimal filter by a direct algorithm, but
only for some classes of input signals, des-
cribed by the authors as ”lowpass”, although
more general than the name suggests. In the
same paper, another fast algorithm is given,
the window method, equivalent to a particular
case of SIP. Finally, Tuqan and Vaidyanathan
[17] transform the problem into a semidefinite
program and find an optimal solution; as we
will see in the sequel, their method has the
drawback of a large number of variables.

The main novelty of our approach is a trans-
formation of the problem, naturally leading to
eigenvalue minimization. This is a particular
but very significant case of semidefinite pro-
gramming (SDP), i.e. an optimization prob-
lem where the objective function is linear and
the constraints are expressed by a linear ma-
trix inequality (LMI). In our case the number
of variables is very low and the parameterized
matrix has a Toeplitz structure. Typically,
SDP problems are solved with interior-point
methods, which have worst case polynomial
complexity and a very good practical behav-
ior; the primal-dual interior-point algorithms
offer also a ”certificate” of optimality, i.e. in-
dicate the tolerance within the (global) opti-
mum is attained. We may affirm that SDP is
the major advance in optimization in the lat-
est decade, combining powerful theoretical re-

sults with highly efficient computational tech-
niques.

The recent literature on SDP is immense.
Among the numerous papers, comprehensive
reviews are given by Vandenberghe and Boyd
[18] and, specifically for eigenvalue optimiza-
tion, by Lewis and Overton [8]; interesting as-
pects of this latter problem are treated also
by Alizadeh [2]. Apparently, SDP was seldom
used in signal processing. For the first time,
the paper of Tuqan and Vaidyanathan [17]
uses SDP for solving the optimum compaction
filter problem. Noll [12] uses eigenvalue opti-
mization for spectrum estimation and image
restoration. Related work is based on nonlin-
ear convex optimization, see e.g. the paper of
Wu, Boyd and Vandenberghe [20] on FIR fil-
ter design subject to bounds on the frequency
response magnitude.

The content of our paper is as follows. After a
presentation of the problem, we outline in sec-
tion 2 the ideas of Tuqan and Vaidyanathan
[17]. Section 3 is the kernel of our paper;
it presents the transformation of the initial
problem to a Toeplitz eigenvalue minimiza-
tion problem. Three algorithms for comput-
ing the optimal compaction filter are deduced
in section 4 and 5 and commented in detail in
section 6. Section 7 is dedicated to a discus-
sion of the structure of the optimal filters (i.e.
the roots on the unit circle). Some numerical
considerations and experiments conclude the
paper.

2. BASIC DEFINITIONS AND
NOTATIONS

Let x(t) be a discrete time wide sense sta-
tionary stochastic signal with autocorrelation
sequence defined by r(k) = E[x(t)x(t−k)]; by
normalization we may take r(0) = 1 without
loss of generality. The associated autocorre-
lation matrix R truncated at size N + 1 is
Toeplitz symmetric with elements on diago-
nal k equal to r(k) (the main diagonal has
number 0). Accordingly, in the sequel we will
write R = Toep(r(0), r(1), . . . , r(N)). Let m
be the number of channels of the FIR filter
bank and suppose that N + 1 is taken as a
multiple of m, i.e. N + 1 = m(n + 1).
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Let H(z) be a FIR filter of order N , with im-
pulse response h(k), k = 0 : N , that is H(z) =∑N

k=0 h(k)z−k; we also think at the sequence
h as a unit norm vector in the familiar Euclid-
ian space RN+1. The associated product filter
is G(z) = H(z)H(z−1) =

∑N
k=−N g(k)z−k.

Obviously, we have G(ejω) = |H(ejω)|2 ≥ 0
and g is a symmetric sequence, i.e. g(k) =
g(−k). The filter H(z) is called a compaction
filter if G(ejω) is Nyquist(m), i.e. g(km) =
δ(k).

Conversely, a given product filter G(z) cor-
responds to a (valid or feasible) compaction
filter if the Nyquist(m) property is satisfied
and in addition G(ejω) ≥ 0.

The relation between the impulse responses
g and h is immediate from the definition of
the product filter. Denote Θk = Toep(ek+1),
k = 0 : N , where ek is the unit vector of index
k. Clearly, g(0) = hT h = ‖h‖2 = 1, and for
k 6= 0 we have

g(k) =
N∑

`=k

h(`)h(`− k) =
1
2
hT Θkh.

Since the Nyquist(m) sequence g has some el-
ements equal to zero and g(0) = 1 is fixed, we
will abusively denote g the vector containing
only the non-trivial elements of the sequence,
i.e.

g = [g(k)]k∈N ,

where

N = {k | 1 ≤ k ≤ N, k mod m 6= 0}.

When m = 2, then g = [g(1) g(3) . . . g(N)]T .
By putting n′ = n + 1, the size of the vector
g is n′′ = |N | = N + 1− n′ = (m− 1)(n + 1),
where n′ + n′′ = N + 1.

For a filter H and a given class of input sig-
nals described by the autocorrelation matrix
R, the variance of the output signal y(z) =
H(z)x(z) is

ρy = hT Rh =
N∑

k=−N

g(k)r(k)

= r(0) + 2
∑

k∈N
g(k)r(k). (1)

A filter H(z) maximizing the variance in (1) is
called optimum compaction filter. There are
two basic formulations of the problem of find-
ing such a filter.

We may consider the unknown to be the im-
pulse sequence h, case in which the problem
is

(H)
ρo = max hT Rh

subject to hT h = 1
hT Θmkh = 0, k = 1 : n,

where ρo is the optimum compaction gain.
The constraints hT Θmkh = 0 are also called
orthogonality conditions. This is a quadratic
optimization problem with n′ nonconvex qua-
dratic constraints and may be solved directly
by classical constrained optimization meth-
ods, as in [19]. However, there is no way of
guaranteeing global optimality of such a solu-
tion and difficulties in satisfying the compli-
cated quadratic constraints are increasing as
N grows larger.

An equivalent formulation may be stated in
terms of the product filter, as in problem (G-
SIP) shown at the top of next page (we remind
the assumption r(0) = 1).

We have here a semi-infinite linear program-
ming (SIP) problem, where the objective func-
tion and the constraints are linear, the num-
ber of variables is finite (and equal to n′′), but
the number of positivity constraints is infinite.
The problem is convex and may be solved con-
sidering only a finite number of constraints,
i.e. by discretizing the positivity constraints
on a finite set ωi ∈ [0, 2π), and using linear
programming methods, as suggested first in
[10]. Special care need to be taken to always
ensure the positivity of g, using for exam-
ple zero clustering [10] or windowing [6]. Of
course, the obtained solution is suboptimal by
its nature; near optimality is reached for finer
discretization, increasing the number of con-
straints.

Although satisfactory compaction filters may
be usually obtained by methods derived from
the above two formulations, there is still no
method to ensure optimality in all situations,
regardless of input data and size of the prob-
lem. In our search, we have found necessary
to re-formulate the problem.



6 Control Engineering and Applied Informatics

(G-SIP)
ρo = max 1 + 2

∑
k∈N r(k)g(k)

s.t. G(ejω) = 1 + 2
∑

k∈N g(k) cos kω ≥ 0
∀ω ∈ [0, 2π)

3. A FIRST SDP APPROACH

Tuqan and Vaidyanathan [17] transformed (G-
SIP) into a semidefinite programming (SDP)
problem using the discrete time Kalman-Yaku-
bovich-Popov (KYP) positivity lemma. Since
this is the starting point of our approach, we
present in some detail their formulation, with
minor changes.

Consider the causal part of G(z)

G+(z) =
1
2

+
∑

k∈N
g(k)z−k. (2)

The equivalence

G(ejω) ≥ 0 ⇔ ReG+(ejω) ≥ 0,

is obvious, so the positivity constraint of G is
transferred to the condition of real-positivity
of G+. The (N -dimensional) state-space real-
ization of G+(z) in controllable form is

G+(z) =
[

A b
cT δ

]
,

where

A =
[

0 0
IN−1 0

]
, b = e1,

cT = gT C, δ = 1/2

(3)

and C ∈ Rn′′×N is a matrix that expands g to
length N , inserting zeros in the positions km,
k = 1 : n (clearly, C is obtained by adding
zero columns to the unit matrix).

The real-positivity lemma [5] states that the
system (A,B, C, D) is passive (or equivalently
its transfer function is real-positive) if and
only if a symmetric matrix P ≥ 0 exists such
that

[
P −AT PA ∗

CT −BT PA (D + DT )−BT PB

]
≥ 0,

where ∗ denotes a block obtained by symme-
try. In our case the positivity condition is
equivalent to

Z =
[

1− bT Pb ∗
CT g −AT Pb P −AT PA

]
≥ 0. (4)

We remark that if (4) holds, then the inequal-
ity P ≥ 0 is automatically fulfilled as a con-
sequence of Lyapunov’s lemma, since in our
case A is obviously stable. Accordingly, we
may assess now that (G-SIP) is equivalent to
the following problem

(G-SDP)
ρo = max 1 + 2

∑
k∈N r(k)g(k),

s.t. Z ≥ 0

where Z is given by (4). Since the objective
function is linear and the constraint is a linear
matrix inequality, this is a semidefinite (lin-
ear) programming problem. While the idea
of transforming (G-SIP) to (G-SDP) is indeed
valuable, one drawback is the very large num-
ber of variables; there are n′′ scalar variables
in g and N(N + 1)/2 in P ; this fact leads to
near intractability when N becomes large; for
N = 50, there are already more than 1000
variables.

4. A NEW SDP: EIGENVALUE
MINIMIZATION

Our idea is to solve not (G-SDP) as it stands,
but its dual, which is another SDP problem
and which turns out to have a much simpler
form after some nontrivial appropriate trans-
formations to be described in this section, ex-
ploiting the hidden structure of (G-SDP).

We need first to express in detail the (ma-
trix) coefficients appearing in the LMI (4).
Let Ek` be the symmetric matrix with the
elements in positions (k, `) and (`, k) equal
to 1 and all other elements equal to 0. Let
∆k` = Ek+1,`+1 − Ek`. Then, taking into ac-
count (3), Z from (4) may be written as in
relation (5), shown at the top of next page.
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Z =
[

1 ∗
CT g 0

]
−

[
bT

AT

]
P [b A] +

[
0 0
0 P

]
=

[
1 ∗

CT g 0

]
−

[
P 0
0 0

]
+

[
0 0
0 P

]
(5)

= E11 +
∑

k∈N
g(k)Ek+1,1 +

N∑

k=1

k∑

`=1

P (k, l)∆k`

(D-SDP)

λo = min 1 + trE11X
s.t. trEk+1,1X = −2r(k), k ∈ N

tr∆k`X = 0, 1 ≤ ` ≤ k ≤ N
X ≥ 0

The dual. Using (5), the dual of (G-SDP)
has the standard form (D-SDP) [18], shown
above, where the matrix variable X is sym-
metric (N + 1)× (N + 1).

Theorem 1 The problems (G-SDP) and (D-
SDP) have the same optimal value, i.e.

ρo = λo. (6)

Proof. According to Theorem 3.1 in [18], the
relation (6) holds if feasible g and P exist such
that Z > 0. This is obvious for g = 0 and e.g.
P = diag(α, α2, . . . , αN ), with 0 < α < 1.

In order to continue our deduction, we need
some simple basic facts from linear algebra.
We work in the natural SDP frame, which
is the linear space of symmetric matrices S;
since we will refer to (5), the size of the ma-
trices is (N + 1) × (N + 1). (When the size
is not clear from the context, we will add an
index to S, e.g. Sp is the space of p × p ma-
trices.) The dimension of this linear space is
dimS = (N + 1)(N + 2)/2 and the matrices
Ek`, with 1 ≤ ` ≤ k ≤ N + 1 form the stan-
dard basis of S. The scalar product is here
〈X,Y 〉 = trXY , X, Y ∈ S, so S is an Euclid-
ian space. Two matrices X, Y ∈ S are orthog-
onal (on each other) if their scalar product is
zero, i.e. trXY = 0. Finally, S can be (par-
tially) ordered by using the (convex) cone of
symmetric positive semidefinite matrices.

The set of symmetric Toeplitz matrices forms
a significant linear subspace T ⊂ S and
dim T = N + 1. The standard basis of T
consists of the matrices Θk = Toep(ek+1),
k = 0 : N .

Denote now trkY the sum of the elements of
Y ∈ S along the k-th diagonal, where 0 is the
main diagonal; this is an immediate general-
ization of the usual trace of a matrix.

Fact 1: Consider the following linear subspace
of S

T̃ = {Y | trkY = 0, ∀k ∈ 0 : N}. (7)

Then dim T̃ = N(N + 1)/2 and the matrices
∆k`, 1 ≤ ` ≤ k ≤ N form a basis of T̃ .

Proof. Immediate, after remarking that any
Y ∈ T̃ has the form

Y =
[

P 0
0 0

]
−

[
0 0
0 P

]
,

where P ∈ SN is a matrix whose elements
are determined starting from the first column
downwards the diagonals.

Fact 2: The orthogonal complement in S of
the Toeplitz symmetric matrices subspace T
is

T ⊥ = T̃ . (8)

Proof. Imposing trXY = 0 for any X ∈ T
(expressed as X =

∑
k αkΘk) results in the

condition
∑

k αktrkY = 0, for any set of coeffi-
cients αk, i.e. Y ∈ T̃ . Since dim T = N +1, a
dimensionality argument completes the proof.

The eigenvalue minimization problem. We are
now in situation to give our main result of this
section.



8 Control Engineering and Applied Informatics

Theorem 2 The problem (D-SDP) is equiva-
lent to

(D)
λo = min λ

s.t. X = λI −R +
n∑

k=1

µkΘmk ≥ 0

Proof. According to the second constraint of
(D-SDP), the variable X is orthogonal on all
the matrices ∆k`; hence, it follows from Fact 2
that X is a Toeplitz matrix, that is X(k, `) =
X(|k − `|). Thus, trEk+1,1X = 2X(k) and so
the remaining constraints reduce to X(k) =
−r(k), for k ∈ N . Finally, the objective func-
tion is simply λ = 1 + X(1, 1) = 1 + X(0),
therefore X(0) = λ− 1.

The above conditions say that, by exploiting
the equality constraints of (D-SDP), the gen-
eral symmetric matrix variable X from (D-
SDP) is transformed into a symmetric Toeplitz
matrix which has the diagonals with index
multiple of m free, while the other diagonals
k are fixed to the values −r(k), that is

X = λI −R +
n∑

k=1

µkΘmk, (9)

where the scalar λ and the vector µ ∈ Rn are
the new variables to be used in the optimiza-
tion process described by (D).

Remark 1: As easily seen, the problem (D)
consists of the minimization of the maximum
eigenvalue λ of the symmetric Toeplitz matrix

R(µ) = R−
n∑

k=1

µkΘmk, (10)

which linearly depends on the parameters µ.
(If the orthogonality constraints are missing,
i.e. n = 0, then (D) reduces to the classical
problem of computing the maximum eigen-
value of R.) Like its equivalent (G-SDP), (D)
is a SDP problem, but it has only n′ variables
and a remarkable Toeplitz structure. Among
all the equivalent formulations listed in this
paper, this is the problem with the smallest
number of variables for arbitrary m and so
(D) is clearly the most numerically tractable.

The second dual. As a SDP problem, (D) has
a dual of its own, which may be seen as an-
other version of (G-SDP). Noticing that the

matrix coefficients in the LMI constraint of
(D) are the unit matrix for λ and Θmk for µ
and appealing to the same mechanism used
to pass from (G-SDP) to (D-SDP), we obtain
the problem

(P)

ρo = max trRZ
s.t. trZ = 1

trΘmkZ = 0, k = 1 : n
Z ≥ 0

where the notation Z is used intentionally to
emphasize the equivalence of this problem
with (G-SDP). A simple look shows that Z
from (5) satisfies the constraints of (P); it is
also possible to prove that the objective func-
tions are identical, using Fact 2 and (5).

We may now see that the problem (P) is not
only equivalent to (D-SDP) but also similar
to our original problem (H) in a very precise
sense. Clearly, if h is a solution of (H), then
Z = hhT is a solution of (P), because this
particular form of Z transforms (P) into (H),
as trRhhT = hT Rh etc. Therefore, we obtain
(H) by adding to (P) the nonconvex condi-
tion rankZ = 1. The formulation (P) is called
convex relaxation of (H) [18]; such relaxations
are used to find suboptimal solutions to hard
nonconvex problems; in our case, optimality
is preserved. (The term convex relaxation it-
self is explained by the fact that the set of
matrices Z with trZ = 1 is the convex hull of
rank-1 matrices hhT with ‖h‖ = 1, see [13].)

Recapitulation. We finally have obtained six
different formulations of the same problem,
i.e. (H), (G-SIP), (G-SDP), (D-SDP), (D)
and (P), all having the same optimal value.
(G-SIP) is the initial formulation is terms of
the product filter. (G-SDP) is obtained via
the Kalman-Yakubovich-Popov lemma and
(D-SDP) is its dual. Simplifying (D-SDP) re-
sults in (D) and its dual (P). Finally, (P) may
be seen as a convex relaxation of (H). Closing
the equivalence circle is possible by the basic
equivalence between (H) and (G-SIP).

Although there are certainly still interesting
details to be unvealed about the connections
between these formulations, we conclude that
the most appealing for numerical computa-
tion on a large spectrum of input data is the
formulation (D).
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5. OPTIMUM COMPACTION
FILTER

From now on we will refer to the matrices Z
from (G-SDP) and X from (D) as having the
values corresponding to optimality. That is,
X, Z are feasible and XZ = 0, by virtue of
the complementarity property [18]. Also λo =
ρo in (D) is the maximal eigenvalue of R(µo)
when the optimum is attained. Of course, λo

is the optimum compaction gain.

We know how to compute the optimum, but
not yet the optimum compaction filter H(z).
Solving (D) furnishes directly the solution to
(H) only in one case which will be explained
immediately; in the other cases, the solution
of (D) must be further processed and this sec-
tion provides a first algorithm.

Let ν be the multiplicity of λo as eigenvalue
of R(µo). Generally, ν > 1, as minimization
tends to coalesce several eigenvalues in λo, as
stressed in [8]. We see from (9) that X and
R(µo) share the same eigenvectors and also
that 0 is an eigenvalue of X of multiplicity ν.

Theorem 3 Let h be a solution of (H), i.e.
the impulse sequence of an optimum compac-
tion filter. Then h is an eigenvector of R(µo)
corresponding to λo (and an eigenvector of X
corresponding to 0).

Proof. Since h is a solution of (H), we have
hT Rh = ρo = λo and hT Θmkh = 0. Multiply-
ing in (9), we obtain

hT Xh = λo − hT R(µo)h = 0.

Since λo is the maximum eigenvalue of R(µo)
(and 0 is the minimum eigenvalue of X), the
theorem holds as a consequence of Rayleigh’s
principle.

Corollary 1: If ν = 1, then h is uniquely de-
fined and solving (D) yields directly the solu-
tion to (H). As eigenvector corresponding to
a unique maximum eigenvalue of a Toeplitz
matrix, this optimum compaction filter has
all the zeros on the unit circle [9].

A first algorithm for the optimal compaction
filter. If ν > 1, let V ∈ R(N+1)×ν be a ma-
trix containing on columns a complete set of

(normalized) eigenvectors of R(µo) associated
with λo; of course, the eigenvectors are pair-
wise orthogonal. Since h is an eigenvector
of R(µo), then h = V u, with u ∈ Rν and
‖u‖ = 1.

Corollary 2: In order to find h in the general
case ν > 1, the vector u must be computed
such that the constraints of (H) are satisfied,
i.e.

uT Cku = 0, k = 1 : n, with ‖u‖ = 1,
Ck = V T ΘmkV.

(11)

Regardless the value of ν, this system with
n′ equations (the normalization condition in-
cluded) and ν unknowns is compatible, fol-
lowing the equivalence of (D) and (H) and the
discussion above.

The system (11) has a nice structure, due to
the properties of eigenvectors of symmetric
Toeplitz matrices, see [4]. Specifically, let J
be the exchange matrix with ones on the anti-
diagonal and zeros otherwise; a vector w is
symmetric if w = Jw and skew-symmetric if
w = −Jw. Then dν/2e of the eigenvectors
of R(µo) corresponding to λo may be chosen
to be symmetric and bν/2c skew-symmetric,
or the vice-versa. We may order the columns
of the matrix V such that symmetric vectors
come first; we denote V = [Vs Va] this order-
ing. Remark now that wT

s Θkwa = 0 for any
vectors ws symmetric and wa skew-symmetric.
Accordingly, the matrices Ck from (11) have
a two-block diagonal structure, i.e.

Ck =
[

V T
s

V T
a

]
Θmk[Vs Va] =

[
Ck1 0
0 Ck2

]
(12)

The system (11) may be solved using the New-
ton-Raphson method. The Jacobian matrix
may be easily computed using only matrix-
vector multiplications. When ν 6= n′, then the
Newton direction is computed in least squares
sense. If ν < n + 1, although the number of
operations is larger, this choice is safer than
simply retaining from (11) only ν−1 equations
and the normalization condition. Anyway, the
cost of solving the system is small with respect
to the cost of SDP.

Generically, the system (11) has 2ν−1 solu-
tions. The Newton-Raphson algorithm com-
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putes only one filter h, the result being stron-
gly dependent on the initialization. The other
solutions correspond to changes in the phase
of the filter, i.e. to the replacement of some
zeros of H(z) by their reciprocal with respect
to the unit circle. If one desires specific phase
properties, the zeros of H(z) must be com-
puted, replaced adequately and then used to
re-obtain the filter coefficients. We even may
refine the coefficients of the new obtained fil-
ter h, using again the Newton-Raphson algo-
rithm, this time with the initial approxima-
tion V T h. It should be noted that we work
here with a polynomial of degree N and spec-
tral factorization is not involved. On the con-
trary, all the alternative spectral factoriza-
tion procedures, which will be discussed in the
next section, operate on polynomials of degree
2N , with several double roots on the unit cir-
cle, and not only have a larger complexity, but
also are more sensitive to numerical errors.

6. RETRIEVING THE PRODUCT
FILTER

All the procedures described in [6] and [10]
compute the product filter G(z) by various
methods and then H(z) using spectral factor-
ization. We will show now how the product
filter may be found in our approach, as an
alternative to the basic method presented in
the previous section. Apparently, the reduc-
tion from (G-SDP) to (D) seems to have lost
the product filter g on the way (as well as the
matrix P ). However, there is a simple way of
retrieving it.

Remark 2: The class of primal-dual interior-
point methods (the most successful in prac-
tice at this moment) solve simultaneously a
SDP problem and its dual. They furnish not
only the solution of the problem, e.g. λo and
µo for (D) and trivially the matrix X, but
also a solution Z of the dual problem. To say
more, the vault key of primal-dual interior-
point methods is to iteratively better and bet-
ter approximate the fundamental equality
XZ = 0 (which implies interesting proper-
ties, e.g. the symmetric matrices X and Z
commute and therefore share the same eigen-
vectors). In the sequel, we suppose that such

a method was used to solve (D), therefore Z
is known.

Theorem 4 The coefficients of the product fil-
ter are

c(k) = trkZ, k ∈ N . (13)

Proof. Immediate, from (5).

Remark 3: Although the matrix Z is not
uniquely determined (the problem (P) has not
a unique solution: if Z is a solution, then the
same is true for Z + Y ≥ 0, where Y has the
form described in Fact 1), any Z leads to a
valid product filter. Usually (in nondegener-
ate cases), the product filter is unique; it is the
matrix P from (5) which undertakes the non-
uniqueness of Z; this is another consequence
of the omnipresent Fact 2 and relation (5).

For future developments, let us partition the
matrix Z according to (4), i.e.

Z =
[

ρ ∗
s Q

]
≥ 0. (14)

The following equalities result

1− bT Pb = ρ,

c−AT Pb = s, (15)
P −AT PA = Q.

Of course, solving for P the Lyapunov equa-
tion above (using only additions), and then
finding c from the second equation (15) gives
the same result as (13).

Other algorithms for the optimal compaction
filter. After computing g from (13), the op-
timum compaction filter may be computed in
several ways by spectral factorization meth-
ods. A short review may be found in [20],
where several algorithms are listed. We will
come back later on this subject.

For the moment, we are interested by the tech-
nique mentioned by Tuqan and Vaidyanathan
[17], which uses a matrix Riccati equation; we
will present it with the aim of deducing our
own method to compute H(z) directly from
Z. For the sake of clarity, we split the vec-
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tor h representing the coefficients of the com-
paction filter as follows

h =
[

δ0

c0

]
(16)

where δ0 = h(0) and the elements of c0 are
h(k), k = 1 : N .

As widely known, if the causal part G+(z)
of the product filter G(z) = H(z)H(z−1) is
given, then there exists a one to one corre-
spondence between the spectral factors H(z)
of G(z) and the symmetric real solutions P0

of the discrete matrix Riccati equation

P0 = AT P0A+
(c−AT P0b)(cT − bT P0A)

1− bT P0b
,(17)

where the pair (A, b) comes from (3) and c
was computed from (15); the filter H(z), as
described by (16), is given by

c0 =
c−AT P0b

δ0
, δ0 = (1− bT P0b)1/2. (18)

The spectral factor of minimum phase corre-
sponds to the minimal solution P0 ≥ 0 of the
Riccati equation (17).

For purposes that will be soon evident, the re-
lations (17), (18) may be written in the equiv-
alent form

1− bT P0b = δ2
0

c−AT P0b = δ0c0 (19)
P0 −AT P0A = c0c

T
0 .

(We could remark here, thinking at the relax-
ation from (P) to (H) and at the hypothetical
relation Z = hhT , that the right members of
(15) and (19) are respectively Z and the outer
product hhT .)

We are now able to indicate how the com-
paction filter may be computed directly from
Z. Denoting

Π = P − P0 (20)

and subtracting the corresponding equations
in (15) and (19), a new system results

ρ + bT Πb = δ2
0

s + AT Πb = δ0c0 (21)
−Π + Q + AT ΠA = c0c

T
0 ,

connecting the blocks of Z from (14) with the
elements of h from (16) by means of the ma-
trix Π.

Theorem 5 The optimum compaction filter
(16) is given by

c0 =
s + AT Πb

δ0
, δ0 = (ρ + bT Πb)1/2, (22)

where Π is the solution of the Riccati equation

Π = Q+AT ΠA−(s + AT Πb)(sT + bT ΠA)
ρ + bT Πb

.(23)

Proof. The theorem is an immediate conse-
quence of relation (21).

Remark 4: Of course, due to the structure
of A and b, there are in (22) only few addi-
tions and a square root extraction. However,
in solving the Riccati equation (22), the full
spectral factorization machinery is naturally
involved.

The phase properties of the filter H(z) result
by choosing the appropriate solution of the
Riccati equation (23).

7. SUMMARY OF ALGORITHMS
AND DETAILS

In the previous sections we have presented
three methods for solving the optimum com-
paction filter problem. Firstly, we will give
them a short algorithmic form appropriate to
implementation. Then, we will refine it into
a Matlab main program, as shown in Figs. 1
and 2. Finally, we will insist on some practical
details.

All the three methods may be seen as two-
step procedures. The first step is to solve the
eigenvalue minimization problem (D). To this
purpose, we used the SDPT3 package of Toh,
Todd and Tütüncü [16], designed for general
SDP problems and written in Matlab; there
are several primal-dual interior-point methods
implemented in this package; we used the im-
plicit choice, based on the Nesterov-Todd di-
rection [15].

Our first method, described in section 4, may
be outlined as follows.
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Algorithm 1:

1.1. Solve (D) ⇒ λo, µo, and R(µo) from (10).

1.2.1. Compute the eigenvectors V ∈ R(N+1)×ν

of R(µo) corresponding to λo.

1.2.2. Compute Ck, k = 1 : n, and find a solu-
tion u to the system (11) using the Newton-
Raphson method. The optimal compaction
filter is h = V u.

1.2.3. (optional) Find the minimum phase (or
other desired) filter equivalent to h, by root
computation and replacement by reciprocal.

The second method, presented in section 5,
uses the result of (D) in order to compute the
product filter.

Algorithm 2:

2.1. Solve (D) ⇒ λo and Z from (5), written
as (14).

2.2.1. Compute the product filter g from (13).

2.2.2. Compute h by spectral factorization of
the product filter.

The third method obtains the optimum com-
paction filter by solving directly a matrix Ric-
cati equation and was described in the final of
section 5.

Algorithm 3:

3.1. Solve (D) ⇒ λo and Z from (5), written
as (14).

3.2.1. Solve for Π the Riccati equation (23).

3.2.2. Compute h from (22) (in the form
(16)).

A more detailed view of these three methods
is given by the Matlab prototype implementa-
tion from Figs. 1 and 2. All the methods are
merged in a single function; h1, h2 and h3 are
vectors containing the impulse responses of
the optimum compaction filter designed with
the three methods. In writing this program,
our aim was to present the simplest but most
explicit form, renouncing at or hiding some
speeding-up tricks. We tried to keep an im-
mediate correspondence between the names of
the variables and the notations used through-
out this paper.

The first step has effectively only one impor-

function [h1,h2,h3] = ocfilter(r, m)
% r - correlation vector
% m - number of channels

N = length(r) - 1;
n = floor( (N+1) / m ) - 1;

% STEP 1:
% prepare parameters for SDP problem (D)
blk{1,1} = ’nondiag’; blk{1,2} = N+1;
R = - toeplitz(r);
f = - eye(n+1,1);
Theta{1} = - eye(N+1);
for k = 1:n

rr = zeros(1,N+1); rr(m*k+1) = 1;
Theta{k+1} = - toeplitz(rr);

end
X0 = 0.001 * eye(N+1); Z0 = X0;
mu0 = zeros(n+1,1);

% solve (D) (eigenvalue minimization)
[val, Z, mu, X] = sdp(blk, Theta, R, ...

f, X0, mu0, Z0);

Fig. 1. Matlab skeleton of our algorithms, step 1.

tant line, namely the call of the function solv-
ing SDP problems in the SDPT3 package; for
an explanation of the arguments see the user
manual at [16]. There are some minor differ-
ences between the statement of the standard
SDP problem in (D) and in [16] (which solves
a maximization problem, while (D) is a min-
imization one); hence, the profusion of minus
signs in our program. The cell Theta stores
the unit matrix, which is the coefficient of λ
in the LMI associated with (D), and the ma-
trices Θmk, the coefficients of µ. The vector f
contains the coefficients of the objective func-
tion.

Algorithm 1: As the implementation is
straightforward, let us mention some hidden
details. The tolerance used to detect to multi-
plicity of the maximum eigenvalue λo must be
larger than the accuracy of the SDP; we con-
sider that 10−6 is a good tolerance, although
it may seem too large. (SDP solution accu-
racy is often at square root of the machine
precision; however, we appreciate that λo is
much more accurately computed.)

To take advantage of the form (12), we need a
routine to compute the symmetric and skew-
symmetric eigenvectors of R(µo). A technique
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was indicated in [3]. Interestingly, the Matlab
function eig furnished frequently the desired
vectors when ν ≤ n′. Ordering the eigenvec-
tors is trivial.

For the step 1.2.2, solving the quadratic sys-
tem (11), we used a simple version of the
Newton-Raphson method with adaptive step
length and random initialization which was
fully satisfactory; in case of nonconvergence
in 20 iterations, the algorithm was restarted.
The stopping criterion was twofold: firstly,
a progress smaller than 10−9 in reducing the
error norm (in the equality constraints of in
(11)); secondly, a value of this error less than
10−5.

The time complexity of solving (11) is largely
influenced by the multiplicity ν of λo, which
may have any value from 1 to N+1 (this latter
case appears when R is diagonal). The case
ν = n′ is occurring frequently and there is an
intuitive explanation to this fact: there are
n variables in the optimization problem (ex-
cepting λ itself) and thus n degrees of freedom
that allow coalescence of the maximal eigen-
value. However, this situation is not generic.
The case ν < n′ has also significant occur-
rence. On the contrary, the case ν > n′, cor-
responding to degeneracy (multiple solutions
of (D)), may be easily created artificially but
seldom appears for randomly generated data
(two cases in thousands of runs).

Algorithm 2: The sensible point of this algo-
rithm is the spectral factorization. The main
numerical difficulty in spectral factorization
is given by the presence of double roots on
the unit circle, natural for the optimal solu-
tion of the compaction filter problem. Their
identification and separation is the ordeal of
any method. We will present in section 8 our
numerical remarks.

A simple algorithm, used for instance by
Moulin and Mihçak [11], belongs to Lang and
Frenzel [7] and effectively computes the zeros
of G(z) and of its derivative, classifies them
in order to find pairs on the unit circle and
recomputes the spectral factor from the ap-
propriate roots.

The other algorithm we used is based on solv-
ing the matrix Riccati equation (17). Then,

% STEP 2:
% Algorithm 1:
rr = r; % build Ropt
for k=1:n % use (10)
rr(m*k+1) = rr(m*k+1) - mu(k+1);

end
Ropt = toeplitz(rr);

% find eigenvectors of Ropt
% corresponding to lopt
[V,L] = eig(Ropt);
lopt = max(diag(L));
V = V(:, find(abs(diag(L)-lopt) < tol));
nu = size(V,2);

if nu == 1
% optimal filter already found
h = V’;

else % solve quadratic system
% put first symmetric eigenvector
V = orderV( V );
for k=1:n

C{k} = V’ * Theta{k+1} * V;
end
h1 = newtraph(C);

end

% Algorithm 2:
% retrieve product filter
for k=1:N, if rem(k,m) ~= 0
c(k) = trace(Z{1}, k);

end, end

% spectral factorization
h2 = factspec(c);

% Algorithm 3:
A = diag( ones(N-1,1), -1 );
b = eye(N,1);

% split Z as in (14)
rho = Z{1}(1,1);
s = Z{1}(2:N+1,1);
Q = Z{1}(2:N+1,2:N+1);

% solve Riccati equation (23)
Pi = dare(A, b, Q, rho, s, eye(N));

% compute h as in (22), (16)
d0 = sqrt(rho + Pi(1,1));
c0 = (s + [Pi(2:N,1); 0]) / d0;
h3 = [d0; c0]’;

Fig. 2. Matlab skeleton, step 2.
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relations (18) are used to obtain the optimum
compaction filter.

Algorithm 3: The Riccati equation (23) is used
here, so it is the moment to remark that the
standard algorithm used in the Matlab func-
tion dare stops execution when finding zeros
(i.e. eigenvalues of the associated symplec-
tic pencil) on the unit circle. However, zeros
are classified inside or outside the circle using
the working precision, i.e. the circle is indeed
a very thin belt. Actually, the selection cri-
terion is that half of the zeros be inside the
circle.

Double roots are computed usually inaccu-
rately, so the danger of finding roots exactly
on the unit circle is practically insignificant.
While the value of the zeros is affected in com-
putation, it seems that the double zeros theo-
retically on the circle migrate one inside and
one outside, i.e. that symmetry is a robust
property.

8. THE ZEROS ON THE UNIT
CIRCLE

When the solution to problem (G-SIP) is not
unique, it is known that some zeros of all op-
timal compaction filters have a fixed position
on the unit circle. One can find a thorough
presentation in [10], for the case m = 2, and
in [11] for arbitrary m. We aim to give in
this section a specific look at this problem,
consistent to our approach, i.e. using the for-
mulation (D).

We will use a simple property of Toeplitz ma-
trices. In what follows, vectors and polyno-
mials of same length are seen as identical.

Lemma: Let R̃ be a symmetric Toeplitz ma-
trix (of size N+1) whose maximum eigenvalue
λo has multiplicity ν. Then, the eigenvectors
of R̃ corresponding to λo have ν0 = N +1− ν
common zeros on the unit circle.

Proof. Let R0 be the leading principal subma-
trix of size ν0 + 1 of R̃. Due to the interlac-
ing property of eigenvalues of leading princi-
pal submatrices (of symmetric matrices), the
maximum eigenvalue of R0 is λo and is unique.
Let h0 be the eigenvector of R0 corresponding

to λo. Then, h0 has all its zeros on the unit
circle (see [9]).

We notice that the vector h̃ = [hT
0 0]T ∈ RN+1

is an eigenvector of R̃ corresponding to λo (we
have h̃T R̃h̃ = hT

0 R0h0 = λo and λo is the
maximum eigenvalue).

Since R̃ is a Toeplitz matrix, any of its princi-
pal blocks of size ν0 +1 is equal to R0; hence,
any vector of the form [0 hT

0 0]T ∈ RN+1,
where the number of leading zeros may take
any value between 0 and ν−1, is an eigenvec-
tor of R̃. These ν vectors are obviously inde-
pendent and they form a basis of the eigenvec-
tor subspace corresponding to λo. As polyno-
mials, they are H0(z), zH0(z), . . . , zν−1H0(z);
any linear combination of these vectors has
the ν0 zeros of h0 on the unit circle.

Corollary: Taking now R̃ = R(µo), the opti-
mal Toeplitz matrix corresponding to the so-
lution of problem (D), and using the above
lemma, we conclude that the zeros (on the
unit circle) of h0 belong also to the optimal
compaction filter, which is a linear combina-
tion of eigenvectors.

Remark 5: The notion of minimal root set (on
the unit circle) may be defined similarly to
[10], this time for arbitrary m, and consists
precisely of the roots of H0(z). Also, some
of the results there may be easily generalized.
For example, as in [11], we can express the
given autocorrelation sequence as

r(k) = −
ν0∑

`=1

ρ` cos(kω`), k ∈ N ,

where ρ` are positive and ejω` are the roots
of H0(z); this is the Carathéodory represen-
tation of the elements of the Toeplitz matrix
λoI −R(µo), see [4].

However, like Moulin and Mihçak [11], we can
only conjecture about the relation between
the multiplicity ν and the unicity of the so-
lution (in terms of the product filter). To
be precise, our opinion is that the solution
is unique if and only if ν ≤ n′ (i.e. ν0 ≥ n′′).

Algorithmic implications: A tempting way of
computing the optimum compaction filter is
to obtain first h0 (after solving (D), of course)
and then a vector h1 such that
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H(z) = H0(z)H1(z). The vector h1 may be
determined in at least two main ways.

Firstly, as the product filter G(z) is available
as indicated by Theorem 4, we can take ad-
vantage of the equality G(z) = G0(z)G1(z),
where G0(z) and G1(z) are the product filter
associated with H0(z) and H1(z). As G0(z)
is easily computed, G1(z) may be obtained by
some polynomial division algorithm adapted
to the symmetry of the problem. (If ν ≤ n′,
one may even use only the zero coefficients
of G(z) in order to form a determined linear
system with the coefficients of G1(z) as un-
knowns. For m = 2, an algorithm is proposed
in [1].) Then, H1(z) is obtained by spectral
factorization; although this is not guaranteed,
usually G1(z) has no roots on the unit circle;
this fact enhances significantly the numerical
reliability of spectral factorization.

Secondly, we can design a Newton-Raphson
method for a system similar to (11). We use
the appropriate basis for the eigensubspace of
R(µo) corresponding to λo, i.e. the (N +1)×ν
matrix

W =




h0(0) 0 0 . . . 0 0
h0(1) h0(0) 0 . . . 0 0
h0(2) h0(1) h0(0) . . . 0 0

...
...

...
...

...
0 0 0 . . . h0(ν0) h0(ν0 − 1)
0 0 0 . . . 0 h0(ν0)




which has as columns all the vectors [0 hT
0 0]T .

Since W is equally a convolution matrix, the
relation h = Wh1 holds. Using this relation
to express the constraints of (H), we obtain
the system

hT
1 Dkh1 = 0, k = 1 : n, with ‖h1‖ = 1,

Dk = W T ΘmkW.
(24)

This is a compatible system and the matrices
Dk are all Toeplitz of size ν × ν. Due to this
structure, if ν ≤ n′, it is clear now that only
ν−1 of the matrices Dk (and the unit matrix
from the normalizing condition ‖h1‖ = 1) are
linearly independent.

Reliability considerations: Despite their sim-
ple form, the two approaches taken in this sec-
tion fail numerically for relatively small values

of N . One of the causes seems to be the com-
putation of h0. The Lemma above leads to
unreliable implementations because R0 has of-
ten close largest eigenvalues. An alternative
way is to use the matrix V (from Corollary
2, section 4), which has orthogonal columns;
we use the (right) triangularization V = LU ,
where L is lower trapezoidal and U orthog-
onal; then, h0 is the last column of L, after
removing the first ν − 1 zeros.

We anticipate the next section with some nu-
merical considerations regarding the two above
algorithms. As the polynomial division (or
deflation) is also numerically unstable, the first
method is clearly unreliable. For m = 2, it
appears that N + 1 = 30 is the higher value
for which uncorrupted results are obtained.
For the second method, solving (24) proved
to give results up to N + 1 = 40.

As they are useful only for small number of
unknowns, we stop here our report on the
methods based on the separate computation
of h0. We appreciate that they are unreli-
able due to (definitive) the computation of h0

without any regard to the constraints of (H).

9. NUMERICAL RESULTS

Optimality: The methods presented in this
paper are all optimal, in the sense that they
find the optimal compaction filter for any given
N , m and correlation sequence r. We have
presented in another paper [14] some compar-
isons with other algorithms, such as the an-
alytical [6] or the linear programming [10, 6]
methods.

We implemented also the algorithm of Tuqan
and Vaidyanathan [17], which solves a modi-
fied version of problem (G-SDP), avoiding the
need of a spectral factorization, with the LMI
constraint expressed like in (5) and which is
also optimal. We will denote T this algorithm.

This section is dedicated mainly to other as-
pects, as the execution time or the accuracy
of computation. For shortness, our algorithms
are denoted A1, A2 and A3.

Execution time: SDP algorithms involve a
large amount of operations per iteration. On
the contrary, the number of iterations is re-
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markably stable with respect to the size of
the problem. Overall, SDP algorithms have a
worst-case polynomial complexity.

Since the package SDPT3 is written in Matlab
(with some few mex files), as well as our pro-
grams, an exact report of computation times
is not significant. To give only a figure, for
N + 1 = 100, m = 2, the execution time was
little greater than one minute for Algorithm
1, and less than two minutes for Algorithms
2 and 3. The largest problem we solved had
N + 1 = 200 and took less than half an hour
(sparse matrice storage is used for the LMI
coefficients Θmk at such large sizes).

As N grows, the time for SDP grows some-
how slower than the time needed by the so-
lution of the Riccati equation. Anyway, the
time required to solve the Riccati equation is
a significant part of the total time, e.g. one
third. On the contrary, solving the system
(11) scales better and the corresponding time
is almost always within 10% of SDP time.

To have a complexity comparison, we give
now some times for algorithm T. We remind
that this SDP problem has n′′ + N(N + 1)/2
variables, i.e. significantly more than in (D).
Using the same SDPT3 Matlab routine, the
execution time was greater than 4 minutes
for N + 1 = 30 and near to 13 minutes for
N + 1 = 40 (and m = 2). We can conclude
that our algorithms are significantly faster.

Accuracy of computation: The spectral fac-
torization method of [7] fails often, more fre-
quently as N grows. The method is probably
too ambitious, as it tries to classify exactly
some quantities affected by numerical errors
(double roots of a polynomial are computed
usually at half of the machine precision). The
successful use of this method in [11] is cer-
tainly due to the fact that, in the context of
SIP methods which give suboptimal results,
there are no (exact) roots on the unit circle.

The Riccati equation method has a more ro-
bust approach, as we suggested in the previ-
ous section and managed to achieve the fac-
torization for all runs. In the sequel, the spec-
tral factorization in Algorithm 2 is supposed
to be obtained via the Riccati equation (17).

Table 1 shows how accurate the computed fil-

Table 1. Magnitude order of worst-case error in
the orthogonality conditions for our algorithms.

Method
N + 1 A1 A2 A3

10 10−9 10−13 10−13

20 10−7 10−10 10−11

40 10−7 10−11 10−12

60 10−7 10−11 10−11

80 10−6 10−10 10−10

100 10−6 10−9 10−11

ter h satisfies the constraints of (H); we adop-
ted a simple error measure

e =

(
n∑

k=1

(hT Θmkh)2
)1/2

.

The table presents the magnitude order of the
error, in the worst case. We used AR(8) pro-
cesses to generate the correlations and made
40 runs for N + 1 ≤ 40 and 20 runs for the
other values of N . Other few runs were per-
formed for values of N + 1 from 120 to 200,
without noticeable change in the accuracy.

It is interesting that the Riccati equation (17)
gives a somehow smaller accuracy than (23),
remark that give an advantage to A3, which is
the most accurate of our three methods. Any-
way, the faster Algorithm 1 has a very conve-
nient accuracy, situated at little less than half
root of the machine precision, even for large
values of N .

Finally, let us mention that, for filter lengths
where the comparison was possible (i.e. where
algorithm T had an affordable execution time),
our algorithms and T gave practically filters
with the same compaction gain and constraints
were respected at similar accuracies.

Examples: We considered an input signal gen-
erated by an AR(4) process, with two pairs of
complex poles of magnitude 0.95. Using our
algorithms, we designed optimum FIR com-
paction filters with 30 and 100 taps; the mag-
nitude of their frequency responses is drawn
in Fig. 3 for m = 2, and in Fig. 4 for m = 3.
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Fig. 3. Magnitude response of optimum com-
paction filter for an AR(4) process, for N +1 = 30
(dashed line) and N + 1 = 100 (solid line), with
m = 2. The input signal spectral power is repre-
sented with a dotted line.
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Fig. 4. Same as Fig.3, for m = 3.

10. CONCLUSIONS AND
FUTURE WORK

This paper was devoted to a new approach
for computing the optimum compaction filter.
The main idea is the reduction of the problem
to the Toeplitz eigenvalue minimization (D),
a semidefinite program with small number of
variables. A second step is required, for which
we have proposed three algorithms, one (A1)
based on solving a quadratic system of equa-
tions and the others (A2 and A3) on different
variants of spectral factorization.

Our interest in the subject remains open.
There appear to be possibilities of generaliza-
tion of some of the basic results in section 3
and connections with other problems may be
made. Also, proving the conjecture in section
7 on the uniqueness of the solution for m > 2
is also a significant aim.
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