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Abstract: The paper focuses on two basic problems for the control engineer: the separability, as a
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1. INTRODUCTION

The highest level of approach used today in
control system theory is not to exclude the
necessity of a deep study of the system theory
basis. The mathematics used in control system
theory has to be applied to credible models and
all operations have to rely on some
phenomenological support. As the
phenomenological support is usually very hard
to be identified accurately, some conceptual
reductions are performed in order to obtain
approximation models. Due to the engineer’s
responsibility to carry out any practical

approach, he must perform such assumptions
taking into account all the types of consequences
that can appear. The level where we can find
conceptual reduction in control system theory is
located at its fundamentals. A physical
introspection into the basic types of elements of
processes (sources, storage elements,
transformers, converters and sinks) is given in
[1] and [6].

This paper focuses on two basic problems: the
separability, as a fundamental assumption to
frame correctly the system connection and the
concept of proportional transfer element used as
a model for many theoretical developments.
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2. SEPARABILITY–FUNDAMENTAL
ASSUMPTION TO FRAME THE
SYSTEM CONNECTION

Statement of the problem

A system can be considered as an ensemble of
interconnected objects, with a well-determined
task, interacting with the environment. The task
is related to the orientation of the system, i.e. the
establishing the input and the output. The flow
channels corresponding to internal connections
of the system are specified by the so-called
„structure of the system”. The fundamental
assumption regarding the interaction between
system and environment is that the environment
doesn’t react at the interaction with system, or
simpler, the environment is both an ideal source
(at the input of the system) and an ideal sink (at
the output of the system). The properties of
system, considered as a collection of objects
interconnected both between them and with the
environment, depends on the properties of the
components, the features of structure, and the
way in which each of them transmits flow
through a connection is constituted (interface
level).

A physical system consists of real objects, while
a mathematical model consists of abstract
objects. The mathematical modelling of a
physical system means to associate to it
mathematical relations. The model works only
with abstract objects and replaces the real flows
in physical system with a special kind of
information flow, e.g. a flow of functions
transmitted and processed through mathematical
operators. The problem of separability is a
specific problem concerning the interface level.
Separability is the property of system that allows
us to consider for each interfacing levels of the
system the elements placed before the
interfacing level as ideal sources and the
elements placed after the interfacing level as
ideal sinks. This means that the transfer of
information is performed without losses. Since
the real connections are with losses the
separability is always an idealization.
Consequently we will speak about the
separability hypothesis.

From the point of view of system structure we
usually admit the existence of three types of
basic connections. These are: the series
connection (figure 1a), the parallel (derivation)
connection (figure 1b) and the feedback
connection (figure 1c).
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Fig. 1. Fundamental connections.

Within this context, the first aspect of
separability is revealed at the interaction
between the real systems and the environment.
The interaction takes place generally in both
directions: from the environment to system and
from the system to environment. None of these
is ideal source or ideal sink. Assuming the
separability hypothesis, the connection between
the real system and environment is put in the
ideal form of system definition and all the
systems are interconnected with the environment
via the variables u and y (u1 =u, y = y2 in figure
1a, u1 =u, u2 =u, y = y1 + y2 in figure 1b, u1+y2 =
u, y = y1 in figure 1c).

The second aspect of separability is revealed
concerning connections inside the structure.
Assuming the separability hypothesis, in figure
1 the subsystems S1 and S2 are considered ideal,
i.e. without losses or consumption at the
interface level (y1 = u2 in figure 1a, y1 and y2 are
mutual independent in figure 1b, u2 = y1 and u1
= u +  y2 in figure 1c).

Based on separability hypothesis the
mathematical models (MM) associated to these
structures can be obtained using the collection of
the mathematical models of the subsystems and
the connection relations. So we hold the
following primary form of mathematical
models:

 for the series connection
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 for the parallel connection:
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 for the feedback connection:
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The separability hypothesis has allowed us to
use the form denoted with (*) for the connection
relations and consequently to use the
mathematical models of subsystem S1 and S2 in
the form they are used in connection with an
ideal environment.

In order to obtain from the primary models (1),
(2) and (3) of the three types of fundamental
connections considered above some canonical
forms we have to make reductions and
substitutions, representing operator composition.
Also, the separability hypothesis makes possible
the composition of the operators representing
the mathematical models of the subsystems.

Naturally, in many situations the separability
hypothesis is not a plausible one. What is to be
done? The simple answer is that for a non-
separable ensemble we need to build a new
model. The composition of operators is not
available anymore. Practically this means a new
modelling effort that in general is not negligible.

As it was underlined before, the fundamental
hypothesis that considers valid the primary
models (1), (2) or (3) are called separability
hypothesis. From a systemic point of view, the
context is as following: in any system consisting
of two physical systems implemented in order to
transmit a command in a defined way,
interactions appear both in the direction of
command transmission, which is the reason for
the connection, and in the opposite direction.
We can say that the physical systems are
separable related to the connection when the
interaction in the opposite direction of the
transmitted command is conceptually negligible.
As well we can say that a system is separable
related to the environment when the systemic
feedback associated to the transfer of the input u
and the output y are negligible or doesn’t exist.
In this case the connection relations having the
form (1), (2) and (3) are accepted and they

represent the basic models for the fundamental
connections.

First it can be seen that in the above assessment
we admit, implicitly, that in any system
consisting of two physical systems there is, from
a systemic point of view, only one connection
type and this is the feedback connection. Second
we admit, explicitly, the feedback negligibility
as the separability hypothesis for the real system
modelling, both for the connections inside the
structure and for the connection system-
environment.

Obviously, can appear a situation when the
separability hypothesis is unrealistic, and
consequently the models (1), (2) and (3) are not
valid. The valid models have to include the
above neglected feedback.

In the next section are presented some examples
in order to consider thoroughly the concepts
described above and what happens when the
separability hypothesis is adopted. In a given
case the user decides the adopting of separability
hypothesis.

Examples on applying the separability
hypothesis.

The first example refers to a case where we
consider the concept of input variable. Like
previous mentioning, a system may be
considered as a set of objects interacting with
the environment using two categories of
variables: input variables (u) and output
variables (y). From the point of view of input
variable the behaviour of environment versus
the systems in this interaction is like of that of
an ideal generator. In the same time, from the
point of view of output variable the behaviour of
system versus the environment is like of that of
an ideal generator. Using these assumptions we
can separate our system from the environment
using representations similar to the one
presented in figure 2.

Fig. 2. Interface variables between the system and
the environment.

In real cases the environment has not an infinite
inertia and there is a two-directional interaction
regarding input and output variables.
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In order to illustrate this problem concerning the
input variable, we consider the very simple
electrical diagram from figure 3a consisting of a
voltage generator controlling a circuit consisting
of a process that is not detailed (the proceeds
details being irrelevant for this case). The
generator is modelled using two ideal
components: a power supply ue and an internal
resistance Ri. The control of the consumer is
made using the terminal voltage u1:

)t(iR)t(u)t(u 1ie1 −= . (4)
In equation (4) i1 represents the current in the
loop issued by the generator and the circuit. The
representation in (figure 3b) shows the feedback
character of this current. In order to consider in
the systemic mode the voltage u1 as the input of
the circuit we use at least one of the
approximations:

Ri ≅ 0 or i1 ≅ 0 (5)
that means the concepts of ideal voltage
generator (Ri ≅ 0) or ideal sink (i1 ≅ 0) . In this
case the circuit may be considered as a system
that interacts with the environment through u =
u1 = ue. From the point of view of energy flow
this means the neglecting the energy dissipated
to transmit the input signal u.

Analogous hypothesis are used to introduce the
input variable u (or the output variable y) of the
models (1), (2) and (3) in the most of practical
situations. However, sometimes it is very
difficult to highlight the way to introduce such
simplifying hypothesis, e.g. the servo-problems
in remote domain.

Fig. 3. Regarding the separability using ideal voltage
generator and / or ideal sink assumptions.

The second example refers to the circuit in
figure 4. It is used in order to discuss some
aspects regarding the series connection. The two
quadripole considered as independent systems
with the orientation u1→y1 and u2→y2 have the
following correspondent mathematical models:

)t(u)t(y)t(yCR 11111 =+⋅ (6)

)t(u)t(y)t(yCR 22222 =+⋅ . (7)
We are interested in two aspects.

First we would like to demonstrate that in the
frame of connection the dependency (6) between
u1 and y1 is not valid anymore. Also, from the
systemic point of view we cannot assimilate the
connection with a series connection. Secondly, it
follows the identification of the reduction we
have to make from the systemic point of view in
the system consisting of two quadripoles in
order to associate it with a series
connection.Considering null initial conditions,
the ensemble has the following primary
mathematical model:
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(8)

In order to obtain the mathematical model for
the channel u1 → y1 from the whole circuit we
have to remove the intermediate variables i(t),
i1(t) and i2(t) from equations (8). We notice that

](t)y(t)u[
R
1i(t) 11

1
−⋅=  and )t(yC)t(i 111 ⋅= . So

)t(yC-](t)y(t)u[
R
1)t(i 1111

1
2 ⋅−⋅= . (9)

Fig. 4. Regarding to the connection of two passive quadripoles.
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Fig. 5. The block diagram, which expresses the interactions between the quadripoles in fig. 4.

Considering the forth equation from (8) we
obtain )()())(( 122222 tyCtitiRC =+

•

 and
replacing in it i2(t) from (9) finally yields:
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It can be seen that, as consequence of
connection with the second quadripole, for the
channel u1 → y1 the mathematical model (6)
isn’t valid. So, connecting the quadripoles in a
cascade connection they cannot be considered as
separable subsystems.

In order to explain what happens, we eliminate
the current i from equation (8). Then we
separate from resulted equations the first two:
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from the last two:
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Removing i1 from equations (10), further we
obtain:

)()()()( 2111111 tiRtutytyCR −=+⋅ . (12)

Removing i2 from equation (11) and observing
that y1 = u2, we obtain exactly the equation from
(7). Also the second quadripole behaves as an
independent subsystem in the frame of
connection. According with equation (11) and
(12) the system with two quadripoles has the
equivalent block diagram shown in figure 5.
Excepting the input variable, the first block
corresponds to equation (6) and the y1 → y2
channel to equation (7).

The presence of i2 current in the block scheme is
imposed by equations (12).

Using this equation we can reach the equation
form (6) only if we neglect the current i2 from
(12). Hence the highlighting of i2 is not required
any more in the new block diagram (figure 6). It
can be noticed that the scheme is similar with
the one presented in figure 1a where the
equations corresponding to the first and the
second block are exactly the equations (6) and
(7).

Fig. 6. Simplifying the structure in figure 5 via
separability hypothesis (13).

For this case the approximation

R1i2(t) = 0 (13)
represents the separability hypothesis. The
systemic result interpretation is that the
feedback considered at the input of the first
subsystem is neglected. From energetic point of
view the interpretation is that the energy
transmitted from the first quadripole to the
second one is neglected.

The third example is focused on a parallel
connection. The system in figure 7 has three
circuits and a voltage generator. For the sake of
simplicity at the interface level the circuits 1 and
2 are considered as voltage generators and
circuit 3 is an input resistor. We would like to
establish the conditions for the circuits 1 and 2
in order to be assimilated with two systems
connected in parallel.

The whole system (assembly) is characterized
by the following equations:

(t)iR)t(iR)t(u)t(u 2i1ie1 −−= , (14)
for the interface between circuits 1 and 2 and the
voltage generator, and for the interface between
circuits 1 and 2 and the circuit 3. In Figure 7, ie
is current of output interface circuit.
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Fig. 7. Electrical diagram used as example for the
parallel connection.

From (15) is obtained
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The aspects connected with the equation (14) are
quite similar with those considered in the first
example. We may consider that the circuits 1
and 2 have the voltage u1 as common entry,
independent of the two circuits considered, only
if Ri1≅0 or i1≅0 and i2≅0 (as in equation (5)) are
valid. Otherwise we have to take into account
that u1 is not constant and that both circuit 1 and
2 are influencing each other.

The last equation in (15) and (16) is apparently
corresponding to the parallel connection. This is
based on the fact that the equations y = y1 + y2
from figure 1b and equations (2) were written by
omitting that y1 and y2 are mutually dependent.
They are also input variables with respect to y.
This is possible only when Rs has a great value
and / or Ri1 and Ri2 have very small values:

Rs → ∞  and/or  {Ri1 and Ri2} → 0. (17)

This is equivalent with the approximation ie(t) ≅
0. In this case the separability conditions are (5)
and (17). The relations (17) can be interpreted
like in figure 8 that corresponds to equations
(15): in order to model the equality y = y1 + y2,
the specific feedback of output circuit

connections are neglected. From the energetic
point of view, on the one side, the energy
dissipated in circuits 1 and 2 used to generate
the output voltages y1 and y2 is neglected and, on
the other side, the energy transmitted from the
circuits 1 and 2 to circuit 3 is neglected too.

Fig. 8. Systemic structure associated to connection of
circuits 1, 2 and 3 in fig. 7.

Further there are underlined some aspects about
the load disturbance concept. It is important for
any connection between an energy generator
device and a consumer. A two-directional
interaction takes place as for any other
connection. To represent the action of generator
on consumer, named control, is used from
informational point of view a control variable u.
To describe the influence of consumer on the
generator is used a second variable, the so-called
load disturbance variable v. In fact, the presence
of the load or of the load disturbance is just the
reason of being of generator and of connection.
The generator and the consumer cannot be
considered in such a case as separable
subsystems. Nevertheless, in the design of
control systems the load disturbances are often
considered as external inputs of generator –
consumer system. From the sake of simplicity,
the load disturbance is taken as results of the
direct interaction of the process with
environment. The representation in figure 9
suggests the idea of last part of above
discussion.

The electrical drive shown in figure 10
illustrates such a situation. The motor M drives
the load machine LM. The behaviour can be
described by the equality:

Fig. 9. Representation of a system with a control
input and a last disturbance input.
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)t(T)t(T)t()JJ( a −=Ω+ , (18)

where Ω is angular velocity of the shaft, Ta is
the active torque developed by the motor,

)t(T is the load torque oppose by the load
machine, J is the inertia moment of drive motor
and J  the inertia moment of load machine.

Fig. 10.

The block diagram in figure 11 corresponds to
the model (18). It is of the same type as that
from figure 9.

Fig. 11. A simplified structure without feedback for a
drive motor – load machine ensemble.

In fact, the problem is more complicated: the
load torque is not an independent variable, but a
variable in correlation with other variables from
the system. Mostly T depends on Ω [2], also

))t((T)t(T)t()JJ( a Ω−=Ω+ . (19)

If we take in account that the moment of inertia
of load machine is sometimes a function of
velocity then the model (19) is replaced by

))t((T)t(T)t()](JJ[ a Ω−=ΩΩ+ .      (20)

The block diagrams in figures 12a and 12b
correspond respectively to the models (19) and
(20). Both structures are more complicated as
those of figure 11. This is obtained from these
two structures by replacing the feedbacks with
an equivalent and independent load torque T .
Such a replacement enables to typify the load
torque variations. In this case the energetic
aspect has a new image: the energy consumed to
cover the resistance of load machine appears as
a dissipated energy in the external environment.

The separability hypothesis is expressed by the
relations:

T  = T (t), respectively T = T (t),
J = constant.
Sometimes the load disturbances are
consequences of some external actions on the
ensemble through the load machine ensemble. In
such cases the interactions are more complex
and this justify the usage of separability
hypothesis.

The last example refers to the translational
mechanical systems shown in figures 13a and
13b.

Fig. 12. Closed-loop structure for the drive motor – load machine ensemble.

Fig. 13. Spring – damper systems.
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The translation result as an effect to the action of
the external force f and the reaction of spring –
damper devices. B1 and B2 are the viscous
damping constant and h1(y1) and h2(y2) are the
non-linear characteristic of the springs.

The mathematical model of the translational
system in figure 13a that described the
movement in the vicinity of equilibrium point ys,
obtained as solution of equation h1(y1s) = M1g, is
([3]).

)t(f)y)(y(h)y(B)y(M 1s1
'
1

)1(
11

)2(
11 =δ+δ+δ .

Here, M1, g, h1' and 1yδ  are, respectively, the
mass, the normal acceleration, the derivative and
the incremental displacement in the vicinity of
y1s.

The equations
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describes the second translational system, from
figure 13b. The linearization around the
equilibrium values y1s and y2s, given by
equalities h1(y1s) = M1g and h2(y2s) = (M1+M2)g,
yields the model
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The correspondent block diagram is given in
figure 14. To the first equation (21) correspond
block A, to the second the bloc B, and block C
to the last equation.

Fig. 14. Bloc diagram associated to the model (21).

It is to observe that the situation is quit similar
with those of example 2º. The separability
condition consist is the neglecting of reaction:

0)t(F~ ≅ .

That means:

M2 very big and / or {h1'(y1s) and h2'(y2s)
very little, B2 very little}.

From the energetic point of view the separability
appears as when the mechanical work of the
force f don’t covers the energy necessary for the
mass - spring – damper subsystem M2-B2-h2.

3. PROPORTIONAL ELEMENTS AND
PROPORTIONAL FEEDBACKS

3.1. Proportional Feedback

The proportional models are frequently models
of physical systems. With notations from figure
2, these models are characterized by the
equation

)()( tkuty = , k = constant. (22)
The concept of dynamic system as a model of a
physical system is that of a strict causal system.
Limiting the presentation to linear, continuous
time and non-variable systems, they have the
expression

( ) ( ) ( )
( ) ( )




=
+=

tCxty
tButAxtx

. (23)

None of the particularizations of model (23) will
lead to (22). Therefore (22) doesn’t belong to
the class of systems (23).

In control system theory there is frequently
encountered the example of state feedback
(figure 15)

wFxu +=  (24)

Fig. 15. Stabilizing of a system (S) using a
proportional feedback compensator F.

If we consider that (S) has the equations (23),
then the ensemble has the model:

( ) ( ) ( )
( ) ( )




=
++=

tCxty
tBwtxBFAtx )(

. (25)
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The result is important because it is of form
(23). The proportional element (22) doesn’t
introduce new state variables but provokes the
change of the transition characteristics in state
space by changing the intensity of the linkage
between state variables. This means a
modification inside the structure of system (23)
and not it’s interaction with a second system, as
it is commonly considered. Considering the
previous section of the paper, this modification
emphasizes the fact that element (22) is
assimilated as inseparable part of the new
structure. In other words, the structure in figure
15 is not physically realizable; it is only a
mathematical decomposition of the model of a
physical system.

The proportional element (22) can be considered
as a particular case of the system

( ) ( ) ( )
( ) ( ) ( )




+=
+=

tDutCxty
tButAxtx

, (26)

situated at rand of causality: for A=0, B=0, C=0,
D≠0, model (22) is obtained.

To the model (26) we can associate the open
loop structure in figure 16. It has the output

( ) ( ) ( )tytyty 21 += , where y1 belongs to the
linear time invariant and causal system (S)

( ) ( ) ( ) ( )
( ) ( )




=
+=

tCxty
tButAxtx

  S
1

(27)

and

( ) ( )tDuty2 = (28)

is a parallel proportional feed-forward channel.
While the proportional element (28) is an
inseparable subsystem of system (26), its
presence is allowable only together with the
system (27)

Fig.16. Block diagram of system (26) composed
from a causal subsystems (S) and a proportional

element D.

Operating with models of form (26) in open
loop (serial or parallel) structures, doesn’t
generate any phenomenological or mathematical
interpretation difficulties. Contrarily, operating

with such models in closed loop can cause
essential difficulties. In contrar with it, the
models of type (23) can be used without any
restrictions.

In the following section two case studies are
considered. The first case shows a situation
when a closed loop system modeled by (26) is
not a valid one. In the second case, the system
obtained from the first through a gain
modification leads to a valid system that can be
applied as model in practice.

3.2. Case - studies

1°. Let the structure from figure 17, where (S)
is a SISO system of type (23) with the transfer
function
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Fig. 17. A SISO continuous system with a
proportional feedback connection and a non-causal

effect [6].

where 0a,0b,0a 0nn ≠≠≠  and the feedback
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The close-loop transfer function is:
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where R(s) is a rational fraction, which is strictly
proper. It shows that the structure has a strong
derivative character. In the same time, has
resulted a reduction of the system order with
one. In this case the feedback connection
changes the system by inhibiting one of the state
variables. This means an anti-causal effect. To
underline some features of the problem in [4]
are considered two examples.
Trying to model the system from figure 17 in
Simulink we will observe that this is not
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possible and that a message of the form
“Trouble solving algebraic loop containing
block….  Stopping simulation.  There may be a
singularity in the solution.” appears. The
situation is identical also in the case when the
structure from figure 17 is included in a more
complex system.

The result can be generalized by the structure
from figure 18. If H1(s) and H2(s) are proper and

( ) ( ) 1sHsHlim 21s
=

∞→
 the ensemble will have a

derivative character, and the Simulink model
will not work.

Fig. 18. A closed-loop connection.

2°. For the SISO linear system (29) is
considered the feedback connection:

( ) ( ) ( )twty
b
a

tu
0

0 += .

Results the structure from figure 19, with the
transfer function
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Fig. 19. A SISO continuous system with a
proportional feedback connection and a causal effect.

It can be noticed that the ensemble behaves like
an integrator system. This is due both to the
positive feedback and to the fact that the gain
a0/b0 is equal to the inverse of the transfer
coefficient of the system (S). The system order
is not modified. We are in the situations of the
models (23), (24) and (25).

More than that, the situation has a consequence
that is usable in practice. Due to the integrator
character, a necessary condition for the system
from figure19 to be in a steady-state regime is

w = 0. (31)

By including the system (30) in a stable
structure like the structure from figure 20, the
equality (31) is forced. If w has more
components, ( ) ( )∑α= twtw ii , the structure
imposes in steady-state regime the
condition:∑ =α 0w ii .

Fig. 20. A closed-loop realised with an integrator
system.

This property was used in [5] in relation with the
achievement of a speed controller for a medium
power hydro-generator. Using relations of the
form (31) the proper droop of the system was
provided.

It is obvious that, from practical point of view,
the achievement of a gain on the feedback
channel, equal to the inverse of the transfer
coefficient of the system (S) is possible only
theoretically. Practically, the implemented value
will be a little bit larger or smaller than the
inverse of the value of the transfer coefficient.
The structure from figure 19 will force a
condition of the form

w = ε, with  ε very small,

and the system from figure 18 will have a
negative or a positive gain of very large absolute
value. An example for these case is discused in
[4].

The result can be generalised in the sense that a
structure like the one in figure 18 with

( ) ( ) 10H0H 21 =⋅  behaves in steady-state regime
as the structure from figure 18, and in dynamic
regime it has also an integrator character.

4. CONCLUSION

The paper considers two fundamental problems
of system theory: the problem of mathematical
model separability and the problem of
proportional systems.
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From the informational point of view, the
connections between two physical systems are
feedback connections. Obtaining series, parallel
or feedback, as basic connections in system
theory, is the consequence of a simplifying of
the real model considering that the systems are
separable. The separability hypothesis permits
the maintaining of system matemathical models
when they are interconnected. The separability
hypothesis takes different aspects depending
both on the interconnected physical systems and
the way of connecting.

Proportional systems are idealized models of
real systems. Generally, this idealization is an
advatageous one. There are also many situations
when operating with proportional elements leads
to block of computing by the appearance of
algebraic loops.
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